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2-Hydroxybenzophenone as Chemical Auxiliary for the Activation 

of Ketiminoesters in the Highly Enantioselective Addition to 

Nitroalkenes under Bifunctional Catalysis†‡ 

Andrea Guerrero-Corella,+ Francisco Esteban,+ Manuel Iniesta, Ana Martín-Somer, Mario Parra, Sergio 

Díaz-Tendero, Alberto Fraile* and Jose Alemán* 

Abstract: An organocatalytic system for the Michael addition of 
mono-activated glycine ketimine ylide using a bifunctional catalyst 
is presented. The ketimine bears an ortho hydroxy group, which 
increases the acidity of the methylenic protons and enhances the 
reactivity, allowing the synthesis of a large variety of α,γ-diamino 
acid derivatives with excellent stereocontrol.  

α-Amino acids are essential molecules in many fields. They are 
used in the synthesis of peptides and proteins, as chiral catalysts, 
as a source of chirality in the design of ligands and in total 
synthesis.[1] Such is the application and demand for 
enantiomerically enriched α-amino acids that synthetic organic 
chemists continue to develop new methods of synthesis.[2] 

Especially important and relevant are α,γ-diamino acid derivatives, 
which are present in a large number of natural and 
pharmaceutical products.[3] For example, DABA analogues are 
used as drugs e.g. anticonvulsants, sedatives, and anxiolytics.[3a]  
HA-966 and L687414 are used as NMDA antagonists,[3b-c] and 
cucurbitine, a natural product found in pumpkins, is used against 
the parasite Schistosoma japonicum[3d] (middle-right, Scheme 1). 

In recent years, ketiminoesters derived from glycine have 
become increasingly important because they provide a starting 
material for the synthesis of optically pure α-amino acid 
derivatives.[4] The alkylation of glycine ketimines with different 
alkylating reagents under PTC conditions has been well 
developed by the excellent works of O´Donnell,[5] Maruoka,[6] and 
others.[7] However, the number of examples related to their 
addition to nitroalkenes, that would give access to -diamino 
acid derivatives, is scarce (middle, Scheme 1).[8,9]  There are no 
highly asymmetric examples of the organocatalytic approach to 
these additions in the literature, where the corresponding adducts 
in the addition of mono-activated ketimines to nitroalkenes can be 
obtained.[9b] The reason for this absence of reactivity, especially 
in the field of the bifunctional thiourea catalysis,[9a-b] is related to 
the lack of acidity of the protons of the α-methylene ester. In fact, 

for this class of ylides, two EWGs are needed to increase the 
acidity to promote the organocatalytic addition. 

In our investigations with bifunctional catalysis,[10] we 
speculated that it might be possible to overcome this 
organocatalytic limitation in the synthesis of α,γ-diamino acid 
derivatives. Recently, different authors such as Takemoto,[11]   
Vicario,[12]  Palomo,[13]  and Krische[14]  among others[15]  (top, 
Scheme 1), have published excellent examples showing how 
different chemical auxiliaries using hydrogen bond activation can 
increase the electrophilicity of amides or ketones, or be used in 
the control of the stereochemistry and reactivity (nitroalkenes and 
aldehydes). However, only a few studies have been reported 
regarding the increase in nucleophilicity. 

The low reactivity in the azomethine ylides in the 
organocatalytic area is due to the low acidity of the CH2 protons. 
Therefore, we wondered if an intramolecular hydrogen bond 
activation would help in the addition to nitroalkenes and provide 
good reactivity and enantioselectivity. However, in order to find an 
appropriate scaffold, the chemical auxiliary must fulfill the 
following requirements: i) be recyclable; ii) inexpensive; and iii) 
easily removable. Taking these factors into consideration, we 
hypothesized that 2-hydroxybenzophenone may be a suitable 
candidate due to the easy intramolecular six membered-ring via 
hydrogen bond formation, and the easy ketimine hydrolysis 
(bottom, Scheme 1). As part of our work to extend the use of the 
hydrogen bond activation, we describe here a new direct process 
for the synthesis of γ,α-diamino acid derivatives, using a new 
chemical auxiliary that is easily recovered, activates the glycine 
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Scheme 1. Background and strategy for the synthesis of a novel chemical 
auxiliary in the organocatalytic synthesis of α,γ-diamino acid derivatives. 
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ketimine and provides excellent yields, diastereo- and enantio-
selectivities.  

Initially, we synthesized the ketimines 1a and 1b (see. S.I.) 
in good yields from commercially available starting materials 
(Scheme 2). The stability of ketimine 1b is very high, and it could 
be stored at room temperature for months. As a proof of concept, 
we performed the reaction with the ketimine 1a, without a hydroxy 
group. No reaction took place using the ketimine 1a and after 24 
hours no trace of the corresponding product 4a was detected. 
However, when the ketimine 1b was used with Takemoto’s 
catalyst 3a, a complete conversion to 4b occurred in only 4 hours. 
These preliminary results prompted us to screen the reaction and 
determine the best catalytic conditions in terms of 
enantioselectivity, diastereoselectivity and yield (Table 1).  
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Scheme 2. Proof of concept for the intramolecular H-bond activation. 

Different thiourea and squaramide catalysts (3a-3b), and 
cinchona thioureas (3c and 3d) were tested (entries 1-4, Table 1). 
Similar results were found with all the thiourea catalysts (ee>95%, 
entries 1 and 3-4), but the reaction resulted in a very low 
conversion with the squaramide catalyst 3b (entry 2). We then 
followed the optimization with the commercially available 
Takemoto catalyst 3a. Different apolar solvents such as DCE or 
p-xylene produced similar results (entries 5 and 6), whereas the  

Table 1. Screening of reaction conditions for the synthesis of 4b.[a] 
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Entry Cat. Solvent Conversion[b] d.r.[b] 
Ee 
[%][c] 

1 3a CH2Cl2 100 90:10 97 

2 3b  CH2Cl2 10 80:20 n.d.[d] 

3 3c CH2Cl2 89 92:8 95 

4 3d  CH2Cl2 100 95:5 97 

5 3a p-Xylene 92 92:8 95 
6 3a DCE 100 88:12 96 
7 3a Et2O 84  85:15 96 
8 3a THF 83 (100)[e] >98:2 98 
9 3a CH3CN 94  90:10 96 
10 3a MeOH 52  91:9 74

[a] Conditions: 0.2 mmol of 1b, 0.24 mmol of 2a, 10 mol% of catalyst 3 in 0.4 
mL of the indicated solvent. [b] Determined by 1H NMR analysis. [c] Determined 
by SFC. [d] Not determined. [e] Determined after 15 h reaction.  

polar solvents such as CH3CN and MeOH produced worse results 
(entries 9 and 10). Interestingly, ethereal solvents provided good 
results, especially in the case of THF which resulted in the product 
4b as a single diastereoisomer with a 98% ee (entry 7 and 8). The 
conversion with the THF solvent was 83% after 4 hours and this 
was increased to a full conversion after 15 hours (result between 
brackets, entry 8). With these conditions defined, the scope of the 
reaction was studied using different substituted nitroalkenes 
(Table 2), and ketimines (Scheme 3). 
 The reaction worked with EDGs and EWGs (4c-4f) with high 
enantiomeric excess (92-97% ee) and good yields (74-81%). The 
addition reaction was also performed with aromatic groups 
containing halogens in the ortho (4g) and para position (4h), 
bulkier groups such as naphthyl (4i) and heterocycles in different 
positions (4j and 4k) from good to excellent ee (90-99% ee). 
Interestingly, alkyl groups at the nitroalkene, which are difficult to 
obtain by other methods, were also tolerated, yielding the amino 
acid derivative 4l, but longer reaction times of 4 days were needed. 
A double bond substitution at the nitroalkene led to the final 
product 4m in a good yield (83%) and excellent ee (98% ee). 

We analyzed other groups at the azomethine ylides in place 
of the carboxylate group (Scheme 3). This catalytic system with 
the hydroxy group allowed the addition of nitrile ylide 1n and 
yielded the product 4n in moderate enantiomeric excess. 
However, the use of derivatives 1o and 1p, with a ketone and 
amide, respectively, resulted in better enantiomeric excesses 
(both with 93% ee). The use of CF3 or an aryl group did not enable 

Table 2. Reaction of glycine ketimine 1b with different nitroalkenes 2.[a] 

 
[a] All the reactions were performed at 0.2 mmol scale in 0.4 mL THF. Ee 
(enantiomeric excess) of 4 were determined by SFC. D.r. (diastereomeric ratio) 
was determined by 1H NMR: Yield isolated after flash chromatography. [b] 
Reaction time: 4 days. [c] Reaction time: 5 days. 
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the corresponding products 4q and 4r, and we only observed the 
unaltered starting materials in the crude mixture. 
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Scheme 3. Use of different glycine ketimines [a] 0.2 mmol (1), 0.24 mmol (2), 
10 mol% of 3a in 0.4 mL of THF. [b] Yield based on recovered material. 

In addition, the reaction was scaled up and the hydroxyketone 
and catalyst 3a were easily recovered (Scheme 4). The reaction 
at this scale (5.6 mmol) took 22 h to complete and using a fast 
percolate of the crude mixture the compound 4b (98% ee) was 
obtained, and catalyst 3a was recovered with a 75% yield (right, 
Scheme 4). Compound 4b was treated with HCl (10%) in smooth 
conditions, and after a simple extraction, the hydroxyketone 5 was 
recovered with a 96% yield. The amino acid salt derivative 6 was 
washed with NaHCO3, and the free amino acid 7 (left, Scheme 4) 
obtained. The absolute configuration of the asymmetric centres of 
6 was unequivocally assigned as 2S, 3S (left, top-Scheme 4) by 
X-ray crystallographic analysis and it was assumed to have the 
same stereochemical outcome as  the other compounds 4.  
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Scheme 4. Scale up and catalyst and chemical auxiliary recovery.  

  The reaction mechanism of the nitroalkene 2a with the 
glycine ketimine 1b in presence of catalyst 3a was studied using 
DFT calculations (see S.I. for details).[17] Initially, we investigated 
the reasons for the lack of reactivity of the three nucleophiles 1a, 
1q and 1r in comparison with 1b and 1n-p (Figure 1). We 
considered the acid-base equilibrium in which the proton is 
transferred from the ketimine 1 to the catalyst 3a and a molecular 
hydrogen bonded 4A-complex is formed.[18] The relative Gibbs 
free energy (G) in the proton transfer equilibrium is presented in 

Figure 1. We then evaluated the effect of the different substituents 
in the acidity of the ketimine 1 towards the formation of the ylide 
4A-complex. The G in 1b (with an OH group) is 5.9 kcal/mol 
lower than in 1a (without an OH group), which demonstrates the 
importance of the intramolecular H bond in increasing the acidity. 
Electron-withdrawing substituents such as COPh (1o), CN (1n), 
CONMe2 (1p), CO2Me (1b) present both inductive (–I) and 
mesomeric (–M) effects; however, 1q (CF3) possesses only –I 
and 1r (Ph) exclusively –M effect. As was predicted, the reactants 
that present groups with both effects showed a lowerG (higher 
acidity). For groups at the ketimine 1 showing only one of the 
effects, the G was increased, (lower acidity). Consequently, 
these latter cases (1q and 1r) did not react. Therefore, a 
combination of these factors is needed to increase the acidity: the 
intramolecular hydrogen bond (C=N---HO-Ar), and the 
appropriated substituents at the ketimine 1 (R groups with both –
I and –M effects). 
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Figure 1. G of proton transfer reactions with different nucleophiles 1. 
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Figure 2. G and energy profile of the two step mechanism. 

We then considered the complete picture of the mechanism 
for the reaction between 1b and 2a catalyzed by 3a. Two steps 
are involved in this process: a proton transfer leading to the ylide, 
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followed by the C–C bond formation (top, Figure 2). The energetic 
profile of both steps is presented in Figure 2. In the first stage, a 
transition state consists of the direct migration of the proton from 
the ketimine 1b to the catalyst 3a. The relative position of the 
nitroalkene 2a depends on the relative position of the proton, 
because the intrinsic dipole of the nitro group points towards the 
positive charge on the proton and assists the proton-migration. 
Figure 2 also shows how the coordination by means of hydrogen 
bonds is fundamental to the appropriate orientation of the 
ketimine 1b with the catalyst 3a, enabling the proton transfer to 
be carried out. The second stage due to the subtle movements 
involved in the geometric reorganization has a very complex 
energy profile and therefore only a scan of the C–C bond distance 
is presented (see details of the complete exploration of the 
potential energy surface in the S.I.). It implies a reorientation of all 
the three benzene rings located in the catalyst, in the electrophile, 
and in the nucleophile, for the new conformation that involves the 
coordinated rotations of the different dihedral angles. The 
intramolecular attack of the nitronate intermediate generated on 
the ketimine is hindered because the orientation of the phenyl ring 
of the ketimine is blocking this addition, without the formation of 
the pyrrolidine core by a formal 1,3-dipolar-cycloaddition. In this 
step, the coordination of the nucleophile 1b to the catalyst 3a is 
also a crucial point in the stereochemistry of the products.[19] 

Overall, the rate limiting step is the proton transfer with a larger 
energy barrier than the C-C bond formation (see Figure 2). 

In summary, an organocatalytic strategy for the synthesis of 
α,γ-diamino acid derivatives in high enantiomeric excess is 
presented. The key to the success is the intramolecular activation 
via hydrogen bonding through an ortho hydroxy group, which 
allows the Michael addition to take place in the presence of 
glycine ylides bearing only one activating group.  
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