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Sho Tabuchi, Koji Hirano,* and Masahiro Miura*[a]

Abstract: A palladium-catalyzed intermolecular decarbox-

ylative C(sp3)–C(sp) coupling of diarylmethyl carbonates
and terminal alkynes has been developed. The reaction

proceeds smoothly under external base-free conditions to
deliver the corresponding alkynylated diarylmethanes with
the liberation of CO2 and MeOH as the sole byproducts.
Moreover, enantioenriched diarylmethyl carbonates are
stereospecifically converted to optically active cross-cou-

pling products with inversion of configuration. Thus, the
stereospecific palladium catalysis can provide new and
unique access to the alkynylated chiral tertiary stereocen-
ters, which are relatively difficult to construct by conven-
tional methods.

Palladium-catalyzed C¢C forming cross-coupling reactions are
well-recognized as highly powerful and reliable synthetic tools
for the construction of various carbon frameworks in modern

organic chemistry.[1] Organic (pseudo)halides and organometal-

lic reagents are usually employed as electrophiles and nucleo-
philes, respectively. However, inevitable formation of halogen-

ated and/or metallic wastes associated with the above starting
substrates is often problematic. To address such problems,

many synthetic chemists have recently developed alternative
cross-coupling methodologies via C¢H activation,[2] C¢O activa-

tion,[3] or decarboxylation.[4] Particularly, the decarboxylative
cross-coupling often proceeds even under base-free conditions
and efficiently constructs C¢C bonds with liberation of CO2

only.[4a, 5] However, they are mostly limited to the intramolecular
reactions; the addition of a stoichiometric amount of external

bases is generally required to promote the intermolecular var-
iants.[5c, 6] Thus, expansion of base-free, decarboxylative-type

cross-coupling into the intermolecular version is still challeng-

ing and highly desirable. Herein, we report a palladium-cata-
lyzed intermolecular C(sp3)–C(sp) coupling of diarylmethyl car-

bonates and terminal alkynes with liberation of CO2 and MeOH
only. The reaction occurs smoothly even under external base-

free conditions to form the corresponding alkynylated diaryl-
methanes in good yields. Moreover, otherwise difficult con-

struction of the alkynylated chiral tertiary stereocenters is pos-

sible by the stereospecific coupling with relatively easily acces-
sible enantioenriched secondary alcohol derivatives.

Our scenario is illustrated in Scheme 1, which is prompted
by our recent success of palladium-catalyzed direct couplings

of heteroarene C¢H bonds with primary and even more chal-
lenging secondary benzylic C¢O electrophiles.[7] The initial oxi-
dative addition of the diarylmethyl carbonate to Pd0 (A to B) is

followed by the decarboxylation to form the (alkyl)(RO)Pd in-
termediate C. Subsequent alkoxide-ligand-assisted C¢H palla-

dation of the terminal alkyne forms the (alkyl)(alkynyl)Pd spe-
cies D with concomitant elimination of the alcohol R1OH. Final
reductive elimination affords the desired cross-coupling prod-

uct and regenerates the starting Pd0 complex A to complete
the catalytic cycle. The challenges of the proposed pathway

are 1) competition between the oxidative addition of sterically
demanding secondary benzylic carbonates and coordination to
the terminal alkyne,[8] 2) external-base-free direct palladation of

the terminal alkyne, and 3) conceivable homocoupling side re-
action of diarylmethyl electrophiles.[9]

On the basis of the above working hypothesis, we chose the
Boc (Boc = tert-butoxycarbonyl) carbonate 1 a’ and triisopropyl-

silylacetylene (2 a) as model substrates and began optimization
studies by the evaluation of ligand structures, in conjunction

Scheme 1. Working hypothesis. L = ligand.
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with Pd(OAc)2 catalyst (Table 1).[10] Monodentate phosphines in-
cluding simple PPh3 and representative Buchwald’s biarylphos-

phines showed poor to moderate activity (Table 1, entries 1–4).

Most bisphosphine ligands also gave less efficiency (entries 5–
6 and 8–11). However, dppb was found to uniquely promote

the reaction, and the desired cross-coupling 3 aa was formed
in 54 % GC yield (entry 7). A 1:2 ratio of Pd/dppb further in-

creased the yield to 63 % (entry 12).[11] Subsequent investiga-
tion of the leaving group identified the methyl carbonate 1 a
to be optimal, and 3 aa was obtained in 78 % isolated yield

(entry 13). Although solvents and palladium salts were also ex-
tensively screened, 1,4-dioxane and Pd(OAc)2 proved to be

best as far as we tested (see the Supporting Information for
more detailed optimization studies).

We subsequently tested a variety of diarylmethyl carbonates
1 for the cross-coupling reaction with 2 a. Conditions with

methyl carbonates 1 (Table 1, entry 13) generally gave better
results, while some specific cases required conditions with Boc
carbonates 1’ (Table 1, entry 12). Representative products are

shown in Table 2. The palladium catalysis was compatible with
electronically diverse methoxy, trifluoromethyl, and chloro

groups at the para position on the phenyl ring (Table 2, en-
tries 1–3). In addition, the meta- and sterically more demand-

ing ortho-substituted substrates underwent the coupling reac-

tion without any difficulties (entries 4 and 5). The primary
benzyl carbonates 1 g’ and 1 h also worked well under the

standard conditions (entries 6 and 7). Moreover, the reaction
tolerated methoxy-substituted 2-naphthalene, 1-naphthalene,

and higher condensed phenanthrene rings equally to form
3 ia–3 ka in good yields (entries 8–10). Unfortunately, simple di-

Table 1. Optimization studies for palladium-catalyzed cross-coupling of
diarylmethyl carbonates 1 with triisopropylsilylacetylene (2 a) under base-
free conditions.[a]

Entry 1 Ligand [mol %] 3 aa, Yield [%][b]

1 1 a’ PPh3 (20) 2
2 1 a’ SPhos (20) 8
3 1 a’ RuPhos (20) 21
4 1 a’ XPhos (20) 13
5 1 a’ dppe (10) 4
6 1 a’ dppp (10) Trace
7 1 a’ dppb (10) 54
8 1 a’ dpppen (10) 21
9 1 a’ dppf (10) 3
10 1 a’ binap (10) 1
11 1 a’ DPEphos (10) 2
12 1 a’ dppb (20) 63
13[c] 1 a dppb (20) (78)

[a] Conditions: 1 a’ (0.25 mmol), 2 a (0.50 mmol), Pd(OAc)2 (0.025 mmol),
ligand, 1,4-dioxane (3.0 mL), 120 8C, 6 h, N2. [b] Yields are estimated by
GC. Yield of the isolated product is given in parentheses. [c] With 1 a
(0.50 mmol) and 2 a (0.25 mmol).

Table 2. Palladium-catalyzed cross-coupling of various benzyl carbonates
1 with triisopropylsilylacetylene (2 a).[a]

Entry 1 3, Yield [%][b]

1

2

3

4[c]

5

6[c]

7

8

9

10
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phenylmethyl carbonate 1 l showed sluggish reactivity
(entry 11),[12] but the introduction of electron-withdrawing tri-

fluoromethyl and electron-donating methoxy groups improved

the yields (entries 12 and 13).
Some terminal alkynes participated in the reaction

(Scheme 2). Silylacetylenes that bear tBuMe2Si (3 ab), Et3Si
(3 ac), and Me3Si (3 ad) groups could be employed under the

standard reaction conditions. The alkyl substituents at the
alkyne terminus were also accommodated: tert-butylacetylene
(3 ae and 3 ee), cyclohexylacetylene (3 ef), and 1-octyne (3 eg)

gave the corresponding coupling products in synthetically
useful yields. The alkyne containing the pivalate function was
also converted to the product in an acceptable yield (3 eh). A
current limitation of this transformation is that arylacetylenes

could not be used as substrates.[13]

Because of the rich chemistry of the alkyne group, it was

possible to manipulate the reaction to afford specific products
(Scheme 3). Upon treatment with tetrabutylammonium fluo-
ride (TBAF) in THF, the tBuMe2Si-substituted product 3 ab un-

derwent the desilylation/isomerization sequence to form the
gem-1,1-disubstituted terminal allene 4 in 97 % yield. On the

other hand, a THF/MeOH mixed solvent system afforded the
terminal alkyne 5 exclusively. The terminal alkyne moiety could

be further converted to the internal alkyne 6 and triazole-con-

taining triarylmethane 7 through the Pd-catalyzed Sonogashira
coupling and Cu-catalyzed azide–alkyne cycloaddition, respec-

tively. In particular, the former transformation can complement
the inaccessibility to the arylacetylene mentioned in Scheme 2.

We finally attempted the asymmetric synthesis by using the
relatively easily accessible enantioenriched diarylmethyl car-

bonate (S)-1 a (99:1 enantiomeric ratio (e.r.), prepared by

Braga’s method)[14] as the starting substrate (Scheme 4). Grati-
fyingly, in the presence of a modified CpPd(h3-C3H5)/dppb cata-

Table 2. (Continued)

Entry 1 3, Yield [%][b]

11[d]

12

13

[a] Conditions: 1 (0.50 mmol), 2 a (0.25 mmol), Pd(OAc)2 (0.025 mmol),
dppb (0.050 mmol), 1,4-dioxane (3.0 mL), 120 8C, 6 h, N2. [b] Yields of the
isolated product are given. [c] With 1’ (0.25 mmol) and 2 a (0.50 mmol).
[d] Yield is estimated by 1H NMR.

Scheme 2. Palladium-catalyzed cross-coupling of diarylmethyl carbonates
1 with various terminal alkynes 2. Conditions: 1 (0.50 mmol), 2 (0.25 mmol),
Pd(OAc)2 (0.025 mmol), dppb (0.050 mmol), 1,4-dioxane (3.0 mL), 120 8C, 6 h,
N2. Yields of the isolated product are given. The coupling carbonates are
shown in parentheses. [a] With 1’ (0.25 mmol) and 2 (0.50 mmol). Piv = tert-
butylcarbonyl.

Scheme 3. Transformations of silyl-substituted cross-coupling products 3.
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lyst (Cp = cyclopentadienyl),[15] the enantiospecific cross-cou-
pling of (S)-1 a and 2 a occurred with inversion of configuration

to form the optically active alkynylated product (R)-3 aa in

84 % yield with 88:12 e.r.[16] Other silylacetylenes 2 b and 2 c
also took part in the reaction, and the enantioenriched cross-

coupling products (R)-3 ab and (R)-3 ac were obtained with
91:9 and 89:11 e.r. , respectively. The methoxy- and chloro-sub-

stituted diaryl methyl carbonates (S)-1 b and (S)-1 d underwent
the same chirality transfer to afford (R)-3 bb and (R)-3 db with

similar levels of stereochemical fidelity. Although similar stereo-

specificity is observed in the nickel-catalyzed cross-coupling of
optically active diarylmethanol derivatives with Mg, Zn, and B-

based sp3 and sp2 carbon nucleophiles,[17] application to sp
carbon nucleophiles still remains underdeveloped. Thus, the

present stereospecific palladium catalysis can provide a unique
approach to the alkynylated chiral tertiary stereocenters, which
are relatively difficult to construct by conventional methods.[18]

On the other hand, from the mechanistic point of view, the ob-
served stereochemical outcome suggests the stereoinvertive
SN2-like oxidative addition and stereoretentive reductive elimi-
nation pathways (Scheme 1).[19] Additionally, while preliminary,

the catalytic stereoinduction in the reaction of racemic 1 a’
with 2 a was also achieved with a Pd(OAc)2/(S,S)-BDPP catalyst

system (Scheme 5).[20] Further mechanistic studies on the ste-

reochemical course and evaluations of chiral ligands for the
asymmetric catalysis are ongoing in our laboratory.

In conclusion, we have developed a palladium-catalyzed in-
termolecular C(sp3)–C(sp) cross-coupling of diarylmethyl carbo-

nates and terminal alkynes. The reaction proceeds smoothly
under external base-free conditions, and CO2 and MeOH are

thus the sole byproducts. Moreover, the stereoinvertive, enan-
tiospecific reaction with optically active carbonates can pro-

vide unique access to the chiral alkynyl-substituted diarylme-
thanes, which are difficult to prepare by other means. Further
studies on related decarboxylative couplings are currently un-

derway and will be reported in due course.

Experimental Section

Typical procedure for Pd-catalyzed coupling of methyl car-
bonates and terminal alkynes

The synthesis of 3 aa is representative (Table 1, entry 13): Pd(OAc)2

(5.6 mg, 0.025 mmol) and dppb (21.3 mg, 0.050 mmol) were placed
in a 20 mL two neck flask, which was filled with nitrogen. 1,4-Diox-
ane (2.0 mL) was added to the flask, and suspension was stirred for
10 min. A solution of methyl (2-naphthyl)(phenyl)methyl carbonate
(1 a ; 146.2 mg, 0.50 mmol) and triisopropylsilylacetylene (2 a ;
45.6 mg, 0.25 mmol) in 1,4-dioxane (1.0 mL) was then added to the
flask, and the suspension was stirred for 6 h at 120 8C. The resulting
mixture was quenched with water (20 mL) and then extracted
three times with ethyl acetate (20 mL x 3). The combined organic
layer was dried over sodium sulfate. Concentration in vacuo and
subsequent purification by column chromatography on silica gel
with hexane as an eluent gave triisopropyl[3-(naphthalen-2-yl)-3-
phenylprop-1-yn-1-yl]silane (3 aa ; 77.7 mg, 0.19 mmol) in 78 %
yield.
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