Triazole Antifungals. IV.¹⁾ Synthesis and Antifungal Activities of 3-Acylamino-2-aryl-2-butanol Derivatives

Toshiyuki Konosu, Yawara Tajima, Noriko Takeda, Takeo Miyaoka, Mayumi Kasahara, Hiroshi Yasuda, and Sadao Oida*, a

Medicinal Chemistry Research Laboratories^a and Biological Research Laboratories,^b Sankyo Co., Ltd., Hiromachi, Shinagawa-ku, Tokyo 140, Japan. Received March 25, 1991

New triazole compounds were designed and synthesized as potential inhibitors of the fungal cytochrome P-450 14α -demethylase. In testing for antifungal activity against a mouse systemic *Candida albicans* infection, (2R,3R)-3-acylamino-2-aryl-2-butanol derivatives III exhibited remarkably high efficacy after oral or parenteral administration. The structure-activity relationships of these amidoalcohols were evaluated.

 $\textbf{Keywords} \quad \text{antifungal activity; } 1,2,4\text{-triazole; } 3\text{-acylamino-}2\text{-aryl-}1\text{-(triazol-}1\text{-yl)-}2\text{-butanol; } \text{cytochrome } P\text{-}450 \quad \text{inhibitor; } \text{structure-activity relationship; } \text{oral activity}$

In a previous paper,2) we reported the synthesis and antifungal activities of triazole compounds I, which have a methyl-substituted oxazolidine ring. Remarkably potent in vivo activity was observed in this series of derivatives. The antifungal activities of these oxazolidines were presumed to arise from the potential ability of I to inhibit the fungal cytochrome P-450 14α -demethylase. This enzyme catalyzes 14-demethylation of lanosterol (II) in the biosynthesis of ergosterol,3) which is an important constituent of the fungal membrane. A structural similarity between the oxazolidine I and lanosterol was hypothesized to be an essential factor accounting for the antifungal potency of I. The oxazolidine I was favorably overlaid to fit to the lanosterol skeleton in a manner such that the 5β -aromatic ring and the oxazolidine ring of I are located on the B and D rings of the steroid, and that the 4β -methyl group and the methylene carbon atom of the 5α-triazolylmethyl group of I respectively occupy the positions of the 13β -methyl and 14α-methyl groups of lanosterol. The N-acyl group of I was regarded as corresponding to the 17-side chain of lanosterol.

The 4R,5R absolute configuration, as well as the location of the methyl substituent at the C(4) position of I, was identified as a key structural element of antifungal potency. Changing the stereochemistry at the C(4) and/or C(5) position or 4-demethylation resulted in a profound decrease in activity, confirming the validity of the hypothesis described above.

There is, however, some divergence in overlaying the oxazolidine I onto lanosterol. As can be seen by inspection of the Dreiding model, the four carbon atoms, Me–C(13)–

$$Me$$
 R
 Me
 R
 $H Me$
 $N N$
 R'
 $N N$
 $N N$

C(14)-Me, of lanosterol adopt a nearly anti coplaner conformation, whereas X-ray crystallographic analysis of the oxazolidine I $[X=2,4-F_2, R=4-(CF_3)C_6H_4]$ revealed that the dihedral angle between the 4-methyl group and the 5-methylene group of I was ca. 137°.4) Meanwhile, X-ray crystallographic analysis of the azidoalcohol (2R,3R)-2b, one of the synthetic intermediates for I, established that the four carbon centers, Me-C(3)-C(2)-CH₂, of **2b** are approximately anti coplanar.5) This conformation of 2b can fit more favorably around these centers to match lanosterol than the oxazolidine I, and 2b was found to exhibit fairly good in vivo antifungal activity, superior to that of ketoconazole. From these facts, we were interested in the antifungal activity of the acylaminoalcohol derivatives represented by the general formula III, which corresponds to the ring-opened analog of the oxazolidine I. It was anticipated that a better fitting of molecule III than oxazolidine I to the space, which should be occupied by lanosterol in the binding site of the cytochrome P-450 14α -demethylase, could be obtained by rotating the C(2)-C(3) bond appropriately, and that triazole III might form a stable complex with the enzyme, resulting in good inhibitory activity.

A variety of acylaminoalcohol derivatives (7-49), as shown in Chart 2, was synthesized, as racemates and/or in optically active forms, by acylation of aminoalcohol intermediates 3 and 4. Racemic aminoalcohols 3a—c were provided as described previously from the epoxides 1a—c via the azidoalcohols 2a—c. Preparation of the optically active aminoalcohol 3b has already been reported.²⁾ Stereoselective synthesis of enantiomeric epoxides, (2R,3S)and (2S,3R)-1a, and azidoalcohols, (2R,3R)- and (2S,3S)-2a, key intermediates for the preparation of optically active aminoalcohols, 3a and 4a, has been disclosed. 1) N-Methylaminoalcohols 4a and 4c were obtained by lithium aluminum hydride reduction of the oxazolidine derivatives 5a and 5c, which were formed by treatment of 3a and 3c, respectively, with paraformaldehyde.²⁾ These N-methylaminoalcohols were alternatively prepared by a ring-opening reaction of the epoxides 1a and 1c with methylamine on heating in methanol, although the 2,4-difluorophenyl analog 4a was accompanied by a substantial amount of the indoline derivative 6, which was shown to be formed by cyclization of 4a.

For structure-activity relationship studies, some addi-

© 1991 Pharmaceutical Society of Japan

2582 Vol. 39, No. 10

 \mathbf{a} : $X = 2, 4-F_2$ \mathbf{b} : $X = 2, 4-Cl_2$ \mathbf{c} : X = 4-Cl

	X	R'	R		X	R′	R		X	R′	R
7	2, 4-Cl ₂	Н	Н	22	2, 4-Cl ₂	Н	$ \bigcirc$ $-$ CO ₂ Me	37	2, 4-F ₂	Н	—————————————————————————————————————
8	2, 4-Cl ₂	Н	tert-Bu	23	2, 4-Cl ₂	Н	(COMe	38	4-Cl	Н	CF ₃
9	2, 4-F ₂	Н -	Me ✓✓Me	24	2, 4-F ₂	Н	-⊚-F _F	39	2, 4-F ₂	Н	Cl
10	2, 4-F ₂	Н	$\sqrt{0}$	25	2, 4-F ₂	Н	-⊘ ^r	40	2, 4-F ₂	Н	~©Cl
11	2, 4-F ₂	Н	$\mathcal{I}_{\mathbf{S}}^{\mathbb{N}}$	26	2, 4-F ₂	Н	<u>-</u> Ø-F	41	2, 4-F ₂	Н	Cl
12	2, 4-F ₂	Н	-(S)-Cl	27	2, 4-F ₂	Н	F	42	2, 4-F ₂	Н	CF ₃
13	2, 4-F ₂	Н	©,-Cl	28	2, 4-F ₂	H⊸	©FF F	43	2, 4-F ₂	Н	CN
14	2, 4-F ₂	Η	Ph	29	2, 4-F ₂	Н	-© _F	44	2, 4-F ₂	Н	OCF
15	2, 4-F ₂	Η	00	30	2, 4-F ₂	Н	$ F_5$	45	$2, 4-F_2$	Me	-⊚-0CF
16	2, 4-F ₂	Н	→O≻NHAc	31	2, 4-F ₂	Н	(⊙)Cl	46	2, 4-F ₂	Me	- <u></u> -CF₃
17	2, 4-Cl ₂	Н	$-\!$	32	2, 4-Cl ₂	Н	-∕©}-Cl	47	2, 4-F ₂	Me	$-\bigcirc_{\mathrm{CF}_3}$
18	4-Cl	Н		33	2, 4-F ₂	Н	$-\!\!\!\bigcirc\!\!\!\!-\!$	48	4-Cl	Ме	$ \bigcirc$ -CF ₃
19	4-Cl	Н	$-\bigcirc$ $-OCF_3$	34	2, 4-Cl ₂	Н	$-\!\!\bigcirc\!\!\!-\!$	49	2, 4-F ₂	Me	Cl
20	2, 4-Cl ₂	Н	⊸⊙-SMe	35	4-Cl	Н	$ \bigcirc$ -CF ₃				~~~
21	2, 4-Cl ₂	Н	- ⊘ -CN	36	2, 4-F ₂	Н	$\overline{F_3C}$				

Chart 2

Chart 3

tional analogs (racemates), as shown in Chart 3, were synthesized and tested for antifungal activity. The $(2R^*, 3S^*)$ amidoalcohol 54 was prepared from diol 50^{2} in the usual manner via 51, 52 and 53. The demethyl derivative 56 was obtained from the aminoalcohol 55, and the sulfonamide 57 was obtained from 3b. The phthalimide analog 58 was formed by heating the aminoalcohol 3a with 4-chlorophthalic anhydride in toluene in the presence of triethylamine.

The in vitro antifungal activities of these acylaminoalcohols and their analogs were evaluated on Sabouraud dextrose agar media. Most of the compounds were shown to have slight or some degree of activity against Trichophyton rubrum. As observed with the oxazolidine derivatives I, however, almost all of the synthesized compounds described above were inactive against most of the other yeast and fungi (Candida albicans, Cryptococcus neoformans, Mucor mucedo, Aspergillus fumigatus, Microsporum gypseum and Trychophyton mentagrophytes) at a concentration of 50 μ g/ml. It is known that there is no good correlation between in vitro and in vivo activities of azole antifungals, as was also seen in the oxazolidine series I. Therefore, these triazoles were subjected to animal model studies of fungal infection. The results of in vivo studies in mice in systemic Candida albicans infection are summarized October 1991 2583

TABLE I. Comparative Antifungal Efficacy of Acylaminoalcohol Derivatives (7—49,54 and 56) and Related Compounds (57 and 58) against Systemic Infection of Candida albicans^a)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Compd^{(b)}$	X	R′	R	Stereochemistry	Dose	Danta		% survival	rate on day	
8	ompu.	Α	K	K	Stereochemistry	(mg/kg)	Route	3	9	14	21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	2, 4-Cl ₂	Н	Н	2R*, 3R*	20				10	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	2 4-C1.	н	tert-Ru	2 R* 3 R*	20				0	
10							-	40	20	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	2, 4-F ₂	Н	٦	$2R^*, 3R^*$	20			10	10	10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	2, 4-F ₂	Н	//_\\	$2R^*, 3R^*$	20	p.o.	30		0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	2. 4-F ₂	Н		2R*. 3R*	20	-			60	30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				S			i.p.	100	70	60	60
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	2, 4-F ₂	Н	SLCI	2R*, 3R*	20				10 50	50 50
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	2, 4-F ₂	Н	-⟨○⟩-Cl	$2R^*, 3R^*$	20	p.o.			40	30
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	2, 4-F ₂	Н	—N Ph	2R*, 3R*	20				10 10	10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15		11	V			i.p.				
17				(0(0)		20				30	C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	2, 4-F ₂	Н	-\(\)-NHAc	$2R^*$, $3R^*$	20	p.o.			20 40	20
18 4-Cl H $-\bigcirc$ OMe $2R^*, 3R^*$ 20 $p.o.$ 40 0 10 100 110 119 4-Cl H $-\bigcirc$ OCF ₃ $2R^*, 3R^*$ 20 $p.o.$ 100 90 90 120 2, 4-Cl ₂ H $-\bigcirc$ SMe $2R^*, 3R^*$ 20 $p.o.$ 100 100 100 100 100 100 100 100 100 10	17	2, 4-Cl ₂	Н	-\(\)-NO.	2R*, 3R*	20				70	60
19 4-Cl H $-\bigcirc$ OCF ₃ $2R^*, 3R^*$ 20 $p.o.$ 100 90 90 90 90 90 90 90 90 90 90 90 90 9	19	4 Cl	п		2D* 2D*	20	-			100	100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			п	-\O_\-OMe		20					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19	4-C1	Н	OCF ₃	2R*, 3R*	20	p.o.			90 100	90 100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	2, 4-Cl ₂	Н	$-\langle \bigcirc \rangle$ -SMe	2R*, 3R*	20		80		40	30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	2 4.Cl	н		2D* 2D*	20				40 100	20 100
23 2, 4-Cl ₂ H				-(O)-CN				100	100	100	100
23 2, 4-Cl ₂ H	22	2, 4-Cl ₂	Н	$-CO_2Me$	$2R^*, 3R^*$	20	•		10	10	(
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23	2, 4-Cl ₂	Н	-(COMe	2R*, 3R*	20	-	0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	2 4-F.	Н		2R* 3R*	20	_		80	40	30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2, 4-1 2	11	-(O)-F	2K , 5K	20				100	70
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	2, 4-F ₂	Н	F	2R*, 3R*	20				0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				70)						20	C
27 2, $4-F_2$ H $\stackrel{F}{\longrightarrow}$ 2 R^* , $3R^*$ 20 p.o. 70 70 60 i.p. 80 50 2 28 2, $4-F_2$ H $\stackrel{F}{\longrightarrow}$ 2 R^* , $3R^*$ 20 p.o. 100 100 100 10 29 2, $4-F_2$ H $\stackrel{F}{\longrightarrow}$ 2 R^* , $3R^*$ 20 p.o. 100 100 9 i.p. 100 100 9	26	2, 4-F ₂	Н		2R*, 3R*	20				90 80	60 50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				F′ _F			р.				
28 2, 4-F ₂ H $\stackrel{F}{\smile}$ F $2R^*$, $3R^*$ 20 $p.o.$ 100 100 10 100 100 100 100 100 100 100 100 100 100	27	2, 4-F ₂	Н	$\overline{\langle \Diamond \rangle}$	2R*, 3R*	20				60 20	40 10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	2.45	**	F F	2.04. 2.04	20					
i.p. 100 100 9	20	2, 4-Γ ₂	п	-√○)-F	2K*, 3K*	20				100	70 60
i.p. 100 100 9	29	2 4-F	н	F	2 D* 2 D*	20	n o	100	100	90	70
70 24E U E 20*20* 20 ** **	2)	2, 4-1 2	11	- ⟨ ○ ⟩_1	2K*, 3K*	20				90	70
\mathcal{F}_{0}	30	2, 4-F ₂	Н	`F F-	2 <i>R</i> *, 3 <i>R</i> *	20	p.o.	10	0		
i.p. 0				-⟨Ø ₂ ,		20			Ū		
	31	$2, 4-F_2$	Н	-{○}-Cl	$2R^*, 3R^*$	20				40	30
	32	2, 4-Cl ₂	Н	- ()-cı	2R*, 3R*	20				90 70	90 30
	33	2 4-F.	н		2 P* 3 P*	20				100	80
i.p. 100 100 10				$-\langle \bigcirc \rangle$ -CF ₃						100 100	90 90
(-)-33 2, 4-F ₂ H $\sqrt{\bigcirc}_{CF_{-}}$ 2R, 3R 20 p.o. 100 100 10	(-)-33	2, 4-F ₂	Н	$-\langle \bigcirc \rangle$ -CF ₃	2R, 3R	20	p.o.	100	100	100	100
$(+)$ -33 2, 4-F ₂ H $\sqrt{}$ CF 2S, 3S 20 p.o. 50 10 1	(+)-33	2, 4-F ₂	Н	-√○>-CF.	2S, 3S	20	p.o.	50		100 10	100 10
i.p. 30 0	34	2, 4-Cl ₂	Н		2R*. 3R*	20				100	100
i.p. 100 100 10				-⟨○)>-CF₃			i.p.	100	100	100	100
() () ()	(<i>-)-3</i> 4	2, 4-Cl ₂	Н	-{	2R, $3R$	2.5				100 100	100 100

2584 Vol. 39, No. 10

TABLE I. (continued)

C 1 h)	V	D/	n	Stangashist	Dose	Davita		% survival	rate on day	
Compd. ^{b)}	X	R'	R	Stereochemistry	(mg/kg)	Route	3	9	14	21
					1.25	p.o.	60	60	60	50
						i.p	90	90	90	80
					0.63	p.o.	30	30	30	30
						i.p	80	80	80	80
35	4-Cl	Н	√O CE	$2R^*$, $3R^*$	20	p.o.	100	100	100	90
			$-\leftarrow\bigcirc$ $ -$			i.p.	100	100	100	100
36	2, 4-F ₂	Н	F,C	2R*, 3R*	20	<i>p.o.</i> i.p.	100 100	50 20	10 0	10
37	2, 4-F ₂	Н	$-\langle \bigcirc \rangle$ -CF ₃	2R*, 3R*	20	p.o.	100	100	100	100
			F			i.p.	100	100	100	100
38	4-Cl	Н	$-\langle \bigcirc \rangle$ -CF ₃	$2R^*$, $3R^*$	20	p.o.	100	100	100	100
39	2.45	***	F Cl	2.0* 2.0*	20	i.p.	100	100	100	100
39	2, 4-F ₂	Н		$2R^*, 3R^*$	20	<i>p.o.</i> i.p.	60 10	30 0	0	
40	2, 4-F ₂	Н	Cl	2R*, 3R*	20	p.o.	100	80	80	40
	, 2		~ 10	,		i.p.	100	90	30	0
41	2, 4-F ₂	Н	CI	2R*, 3R*	20	p.o.	100	100	60	. 60
			~ 10			i.p.	100	100	100	100
42	2, 4-F ₂	Н	Ć CF	$2R^*, 3R^*$	20	p.o.	100	100	90	60
			\sim			i.p.	90	90	90	70
(−)-43	$2, 4-F_2$	Н	⟨CN	N 2R, 3R	20	p.o.	100	100	50	40
			~ 10			i.p.	100	100	60	50
(-)-44	2, 4-F ₂	Н	OCI	$F_3 = 2R, 3R$	20	p.o.	100	100	100	80
	_			,		i.p.	100	100	100	100
(-)- 45	2, 4-F ₂	Me	$-\langle \bigcirc \rangle$ -OCF ₃	2R, 3R	20	p.o.	100	100	70	40
			0 0013			i.p.	100	100	70	40
46	$2, 4-F_2$	Me	$-\langle \bigcirc \rangle$ -CF ₃	$2R^*, 3R^*$	20	p.o.	. 100	100	100	100
			(C) C1 3			i.p.	100	100	100	90
47	2, 4-F ₂	Me		2R*, 3R*	20	p.o.	100	70	40	20
47	2, 4-1 2	IVIC	CF_3	2R , 5R	20	i.p.	100	80	50	40
48	4-C1	Me	$-\langle \bigcirc \rangle$ -CF ₃	2R*, 3R*	20	p.o.	100	100	100	100
		1,10	F Cr ₃	21 (, 51)		i.p.	100	100	100	100
49	2, 4-F ₂	Me	\bigcirc CI	2R*, 3R*	20	p.o.	100	100	80	60
			\sim			i.p.	100	100	100	80
54	4-Cl	H	$-\langle \bigcirc \rangle$ -CF ₃	$2R^*, 3S^*$	20	p.o.	20	10	0	
5 .6	2.45	TT		2.04	20	i.p.	0	50	10	
56	2, 4-F ₂	H	- ⟨○ }-CI	2R* (3-demethyl)	20	<i>p.o.</i> i.p.	100 100	50 20	10 0	0
57	2, 4-Cl ₂	NHS	O ₂ -(O)-Cl)	2R*, 3R*	20		10	0	-	
37	2, 4-C12	(11110		2K', 3K'	20	<i>p.o.</i> i.p.	50	0		
58	2 4 5	/	CI	2R*, 3R*	20		100	40	20	,
30	2, 4-F ₂	1-1		2K*, 3K*	20	p.o.			10	(
		/				i.p.	100	50	10	(
Ketocona	zole				20	p.o.	100	50	30	1
T21	.1.				20	i.p.	100	50	20	
Fluconazo	oie				20	p.o.	100	100	70	6
					6.25	p.o.	100 100	90	70	60 30
					3.13	p.o.		90	60	

a) In vivo activity was determined in mice (each group consisted of ten male mice, 5 weeks old, of the ddY strain) that were infected systemically using an intravenous challenge of 6 to 9×10^6 cells of Candida albicans 427. The triazole was administered orally (p.o.) or intraperitoneally (i.p.) at 1, 4, and 24 h post-infection. b) Compounds are racemic unless otherwise indicated. The amides 8—10 are oxalic acid salts, (-)-33, (+)-33 and (-)-44 are HCl salts, and (-)-45 and 58 are HNO₃ salts.

in Table I. The compounds were administered orally (p.o.) or intraperitoneally (i.p.) at 1, 4, and 24 h post-infection. All control mice (no drug) died within 2 d after infection. The antifungal efficacy of the compounds was compared with that of ketoconazole and fluconazole, both of which

are currently used for the treatment of fungal diseases, including deep-seated mycoses.

The structure–activity relationships were evaluated initially by varying the N-acyl groups in a series of compounds with $2R^*$, $3R^*$ stereochemistry. No significant difference

October 1991 2585

was observed between the p.o. and i.p. activities of the compounds tested. Compound 7, which has an Nformylamino function, was somewhat active, though it was not very potent, and the analogs 8 and 9, which have a bulky alkyl group, showed significantly decreased activity. The latter compound, 9, was of initial interest because of the likeness in shape of its acyl group to the 17-side chain of lanosterol. Amides 10, 14 and 15, with an unsubstituted (hetero)aromatic ring, showed no significant activity, although the unsubstituted thenoyl counterpart 11 showed good activity. Amides 12 and 13, with a chlorine-substituted heteroaromatic ring, also showed high activity. These heteroaromatic amide analogs, however, were excluded from any further consideration of modification, because of their relatively less potent activity compared with the corresponding benzamide congener. The benzamide derivatives, 16 and 20, which have an acetamido or methylthio group at the 4-position of the benzoyl group, expressed some potency, whereas the 4-methoxybenzamide 18 exhibited very poor activity, presumably as a result of rapid metabolism of both the methoxy group and the relatively electron-rich benzene ring of the acyl moiety. The trifluoromethoxy derivative 19 showed excellent activity, as did the nitro (17) and the cyano (21) compound. These compounds possess an electron-withdrawing group at the 4-position of the benzoyl group, whose benzene ring is thereby expected to be resistant to metabolism. On the other hand, the compounds with either an ester (22) or acetyl (23) function on the benzoyl group showed no significant activity, which is presumably due to the metabolic instability of these substituents. Monohalogenation at the 4-position of the benzoyl group enhanced antifungal potency, as can be seen from 24, 31 and 32, whereas the 3-fluorobenzoyl derivative 25 showed only poor activity. The difluoro series 26—29 exhibited increased potency. All 4-(trifluoromethyl)benzoyl derivatives, 33, 34 and 35, and the 2-fluoro-4-(trifluoromethyl)benzoyl derivatives, 37 and 38, showed the highest activity, because after being administered p.o. or i.p., almost all mice survived as long as 3 weeks after infection. This activity was more potent than that of fluconazole. In contrast, the activity of the 2-(trifluoromethyl)benzoyl analog 36 was less potent. The phenylacetyl derivative 39, a homolog of 31, had no significant activity. The phenethyl analog 40 showed good activity, and its dehydro analog 41, a cinnamamide derivative, enhanced in vivo potency. Other cinnamamides, 42, (-)-43 and (-)-44, retained the potent activity of the parent benzamide derivatives.

The N-methylbenzamides, (-)-45, 46—48, and the N-methylcinnamamide 49 also expressed remarkably high activity. The $(2R^*,3S^*)$ -benzamidoalcohol 54, a diastereo-isomer of 35, was almost devoid of activity, and the demethyl analog 56 showed significantly less potency than the methyl equivalent 31. Comparison of the activity of the enantiomeric pair of the benzamidoalcohols, (-)-33 and (+)-33, revealed that antifungal activity resides in (-)-33, which has a 2R,3R absolute configuration, as was expected from the previous results of the oxazolidines I and also from the aforementioned discussion of the structural similarity between III and lanosterol. Interestingly, the sulfonamide 57, an analog of the benzamide 32, did not show any significant in vivo activity. The phthalimide

Table II. The ED₅₀ Values of Selected Compounds in Mice Infected Systemically with *Candida albicans*

Compound	Route	ED ₅₀ (mg/	kg) on day
Compound	Route	14	15
32	p.o.	7.07	
	i.p.	3.84	
33	p.o.		0.86
	i.p.		< 0.63
(-)-33	p.o.		< 0.31
	i.p.		< 0.31
(-)-34	p.o.	1.06	
	i.p.	< 0.63	
35	p.o.		1.19
	i.p.		1.71
37	p.o.		< 0.63
	i.p.		< 0.63
38	p.o.		0.88
	i.p.		0.90
46	p.o.		0.66
	i.p.		< 0.63
48	p.o.		1.31
	i.p.		1.97
Ketoconazole	p.o.		31.4
	i.p.		39.9
Fluconazole	p.o.		3.00
	i.p.		3.04

The ED₅₀ values were determined by the probit method in mice (each group consisted of ten male mice, 5 weeks old, of the ddY strain) that were infected systemically using an intravenous challenge of 6 to 9×10^6 cells of Candida albicans 427. Compounds were tested at appropriate doses selected from the series 10, 5, 2.5, 1.25, 0.63, 0.31 mg/kg by p.o. or i.p. administration at 1, 4, and 24 h post-infection. All compounds are free bases except for 32 (oxalic acid salt) and (-)-33 (HCl salt).

derivative 58 was less potent than the amide analog 31.

The structure—activity relationship patterns of the amidoalcohol variants discussed here are parallel with those of the oxazolidine derivatives I. The ED50 values (the dose of compound required to cause 50% of the treated animals to survive) for the selected amidoalcohols in a murine model of systemic candidiasis were evaluated, and the results are given in Table II. Antifungal potency of these amidoalcohols and the oxazolidines I was compared by the ED_{50} values. The ED_{50} 's (on day 14) of the typical oxazolidine (I: $X = 2,4-Cl_2$, R = 4-chlorobenzoyl; racemate, oxalic acid salt) were determined as 8.52 mg/kg, p.o. and 10.0 mg/kg, i.p., and those of the amidoalcohol equivalent 32 (racemate, oxalic acid salt) were 7.07 mg/kg, p.o. and 3.84 mg/kg, i.p.; the amidoalcohol showed slightly more potent activity than the oxazolidine counterpart. Among the racemic triazoles tested, the 2-fluoro-4-(trifluoromethyl)benzoyl derivative 37 was the most potent against Candida albicans infection; the ED₅₀ (on day 15) was $< 0.63 \,\mathrm{mg/kg}$ for both p.o. and i.p. administration, which was at least 5 times more potent than fluconazole, whose ED_{50} 's (on day 15) were 3.00 mg/kg, p.o. and 3.07 mg/kg,

In a preliminary toxicity study, all five mice (ddY strain, male, 5 weeks old) tested survived after oral dosing of 1000 mg/kg of 33 (racemate) once daily for 4 d.

Further evaluation of these amidoalcohols is in progress.

Experimental

Melting points are uncorrected. Infrared spectra (IR) were recorded on a JASCO A-2 spectrometer and proton nuclear magnetic resonance spectra (¹H-NMR) on a Varian EM-360L spectrometer in CDCl₃ using

TABLE III. 3-Acylamino-2-aryl-1-(1H-1,2,4-triazol-1-yl)-2-butanols (7—49, and 54) and Related Compounds (56—58)

Compd.	Yield	mp (°C) (Solvent ^a)	IR v _{max} cm ⁻¹ (State)	1 H-NMR (CDCI,) δ^6	∢.	Analysis Calco	Analysis % or MS m/z Calcd (Found)	S m/z 1)		
•	(%)	Salt: mp (°C)	Optical rotation		С	н	z	H	Halogen	
	57	233—237	3200, 1679, 1656,	0.95 (3H, d, 7), 4.51 (1H, d, 14), 5.45 (1H, d, 14), 5.45 (1H, q, 7), 7.0—7.7 (3H, m), 7.75 (1H, s), 8.25 (2H, s) ^{c)} C ₁₃ H ₁₄ Cl ₂ N ₄ O ₂	7.43	4.29	17.02			
∞	95	(A-H) Oil	1138 (K.Br) 3650, 1650, 1506	0.86 (3H, d, 7), 1.27 (9H, s), 4.27 (1H, d, 14), 5.33 (1H, br d), 5.37 (1H, br), 5.62 (1H, d, 14), 6.24 (1H, br d), $C_{17}H_{22}CI_2N_4O_2$		4.30 (M++	.4'.01 4.30 10.76) 387, 385 (M ⁺ + 1), 369, 327, 302,	327, 30	2,	
d	9)	[156—160]	(CHCl ₃)			5, 197, 1.	257, 256, 197, 128, 85, 70 (100%)	0 (100	(%)	
•	60	UII [143—145]	3450, 1660, 1500 (CHCl ₃)	0.92 (3H, q, 7), 1.00 (0H, 8), 2.34 (4H, q, 3), 4.37 (1H, q, 14), 4.00 (1H, q, 7), 4.30 (1H, q, 14), 0.3—7.7 (3H, $_{\rm C_19H_24F_2^4V_4^4^2}$ m), 7.76 (1H, 8), 7.97 (1H, 8)		, (M.), 7, 82, 70	379, 376 (M.), 290, 224, 16 141, 127, 82, 70, 44 (100%)	, 100, 1%)	, , ,	
10	87	Oil	3430, 1658, 1595,	1.00 (3H, d, 7), 4.50 (1H, d, 14), 4.9 (1H, m), 5.06 (1H, d, 14), 5.25 (1H, br), 6.5–7.6 (6H, m), 7.80 (1H, s), $C_{17}H_{16}F_2N_4O_3$		+ +1), 3,	363 (M ⁺ +1), 343, 281, 224 (100%),	224 (1	0%),	
=	9/	[1/4-1/6] $166-167$	1515 (CHCl ₃) 3430, 1645, 1530,	7.87 (114, 8) 1.03 (3H, d, 7), 4.52 (1H, d, 14), 4.95 (1H, m), 5.09 (1H, d, 14), 5.4 (1H, br), 6.6—7.8 (6H, m), 7.79 (1H, s), $C_{17}H_{16}F_{2}N_{4}O_{2}S$		5, 121, 9 4.26	3, 82, 70 14.81	щ	10.04	
2	9	(A-H)	1500 (CHCl ₃)	7.90 (1H, s)	(54.21 O S 49.46	4.33	14.89	чĘ	10.29)	
7.	}	(E-H)	3400, 3270, 1020, 1550 (KBr)	, ,	•	3.81	13.31	5 5	8.55)	
13	77	188—190 (A_H)	3430, 1662, 1583, 1500 (CHCL)	1.01 (3H, d, 7), 4.46 (1H, d, 14), 5.05 (1H, m), 5.05 (1H, d, 14), 5.3 (1H, br), 6.6—7.0 (2H, m), 7.2—7.6 (1H, m), $C_{18}H_{16}CIF_2N_5O_2$	O ₂ 53.01 (52.86	3.95	17.17	ם ם	8.69	
14	9/	133—134	3380, 1658, 1616,	1.02(3H, d.), 7.3.48(1H, d.), 4.97(1H, br.s), 5.05(1H, m), 5.09(1H, d.), 6.6—7.1(3H, m), 7.3—7.7(4H, C _{1.9} H ₁₈ F ₂ N ₄ O ₂		4.87	15.05	TT.	10.20	
15	28	(A-H) 187—189	1518 (K.Br) 3460, 1657, 1500	m), $1.7-8.1$ (2H, m), 7.81 (1H, 8), 7.86 (1H, 8) 1.86 (1H, 6), 5.2 (1H, br), $6.6-7.1$ (3H, m), $7.2-8.1$ (8H, m), $1.2.8.1$ (1H, d), 1		4.77	13.26	ı, [I	10.08) 8.99	
		(A-H)	(CHCl ₃)	,	Ŭ	4.69	12.93	щ	8.71)	
91	51	254—255.5 (A-H)	3405, 3325, 1694, 1643, 1529 (KBr)	1.05 (3H, d, 7), 4.47 (1H, d, 14), 4.97 (1H, m), 5.03 (1H, d, 14), 6.6—7.1 (2H, m), 7.1—7.5 (1H, m), 7.5—8.2 $C_{21}H_{21}F_2N_5O_3$ (4H, m), 7.73 (1H, s), 7.81 (1H, s), σ	3 58.74 (58.72	5.00	16.31	т, [т,	8.85 9.05)	
17	99	257—258.5	3375, 3300, 1650,	$1.14(3H, d, 7), 4.89(1H, d, 14), 4.98(1H, m), 5.86(1H, d, 14), 5.89(1H, br), 7.15(1H, dd, 9, 2), 7.47(1H, d, C)$ $C_{19}H_{17}Cl_2N_5O_4$		3.81	15.55			
<u>×</u>	71	(M-A) 200—202	1556 (KBr) 3450 1645 1604	2), 7.81 (1H, d, 9), 7.91 (1H, s), 8.37 (1H, s)" 103 (3H, d, 7), 3.85 (3H, s), 4.47 (1H, d, 14), 4.70 (1H, m), 4.72 (1H, d, 14), 5.33 (1H, br), 6.74 (1H, brd, 9), C., H., CIN, O.	59.45	5.28	13.98			
2		(A-B)	1493 (CHCl ₃)		Ū	5.21	13.83)			
61	09	172—177	3360, 1638, 1543,	1.03 (3H, d, 7), 4.45 (1H, d, 14), 4.65 (1H, m), 4.74 (1H, d, 14), 5.30 (1H, s), 6.82 (1H, brd, 9), 7.30 (4H, s), $C_{20}H_{18}ClF_{3}N_{4}O_{3}$	tO ₃ 52.81	3.99	12.32	ц	12.53	
70	4	(A-H) 167—168	1302 (N.Br) 3300, 1627, 1545	7.34 (2H, d, 9), 7.00 (1H, 8), 7.02 (1H, 8), 7.93 (2H, u, 9) 0.98 (3H, d, 7), 2.51 (3H, 8), 4.42 (1H, d, 18), 5.47 (2H, m), 5.67 (1H, d), 6.83 (1H, brd), 7.11 (1H, dd, 9, 2), C., H., Cl., N., O., S		4.47	12.41	- U	15.71	
ì	:	(A-H)	(KBr)			4.58	12.39	D	15.14)	
21	74	246—248 (A)	3520, 3250, 2220, 1660, 1554 (KBr)	1.11 (3H, d, 7), 4.83 (1H, d, 15), 5.00 (1H, br), 5.84 (1H, d, 15), 7.15 (1H, dd, 9, 2), 7.44 (1H, d, 2), 7.80 (1H, $_{20}H_{17}Cl_2N_5O_2$ d, 9), 7.85 (2H, d, 8), 8.25 (2H, d, 8), 8.36 (2H, s) ^a) ₂ 55.83 (55.95	3.98	16.28			
22	82	122—130	3560, 3330, 1711,	1.01 (3H, d, 7), 3.92 (3H, s), 4.61 (1H, d, 15), 5.42 (1H, br), 5.51 (1H, d, 15), 6.11 (1H, s), 7.23 (1H, dd, 9, 2), $C_{21}H_{20}Cl_2N_4O_4$		4.35	12.09			
"	57	(dec.) (M)	1634, 1560 (KBr) 3430-3110-1677	7.51 (1H, d, 2), 7.63 (1H, d, 9), 7.8—8.3 (4H, m), 8.15 (2H, s) ^{el} 098 (3H, d, 7), 2 63 (3H, s), 4 45 (1H, d, 15), 5 49 (2H, hr, 5 67 (1H, d, 15), 6 90 (1H, hrd.), 7 12 (1H, dd, 9, CHCL.N.O.	(54.63	4.33	11.88)	כ	15.85	
ì	õ	(A-H)	1650, 1525 (KBr)		Ŭ	4.48	12.24	5	15.39)	
24	68	205	3280, 1634, 1530	1.04 (3H, d, 7), 4.47 (1H, d, 15), 4.96 (1H, m), 5.08 (1H, d, 15), 6.5—7.1 (2H, m), 7.1—7.9 (1H, m), 7.19 (2H, $C_{19}H_{17}F_{3}N_{4}O_{2}$,2 58.46 (58.62	4.39	14.35	TT TT	14.60	
25	44	(A) 164—165	3400, 3280, 1638,	6, 7.27 (21) 4.47 (1H, c		4.39	14.35	ابتا	14.60	
9,6	37	(A-E)	1553 (KBr) 3370-3230-1668	m), 7.82 (2H, s)	(58.38	3.95	14.17	ני ני	14.85)	
3	ā	(A)	1535 (KBr)		Ŭ	3.81	13.73	I,	18.59)	
27	39	150—151 (F—H)	3420, 1662, 1528 (KBr)	$1.02(3H, d, 7), 4.52(1H, d, 14), 4.99(1H, br), 5.07(1H, d, 14), 5.32(1H, br d), 6.6-7.1(3H, m), 7.1-7.6(3H, C_{19}H_{16}F_4N_4O_2 m), 7.6-8.1(1H, m), 7.82(7H, s)$	55.88 (56.11	3.95	13.72	ir ir	18.61	
28	38	168—169	3400, 3300, 1637,			3.95	13.72		18.61	
29	39	(E-H) 178	1540 (K.Br) 3420, 1640, 1620,	m), 7.83 (2H, 8) 1.02 (3H, 4, 7), 4.43 (1H, 4, 14), 4.98 (1H, br), 5.06 (1H, 4, 14), 5.39 (1H, br s), 6.4—7.1 (3H, m), 7.1—7.6 (4H, $C_{19}H_{16}F_4N_4O_2$		3.95	13.72	נקובקן	18.61	
30	47	(E-H) 111—116	1595 (KBr) 3425, 1680, 1500	m), 7.81 (2H, s) 0.98 (3H, d, 7), 4.53 (1H, d, 14), 5.09 (1H, d, 14), 5.1 (2H, m), 6.6—7.8 (4H, m), 7.82 (1H, s), 7.85 (1H, s) C ₁₀ H ₁₃ F ₂ N ₄ O ₂	(55.40	4.42 2.83	13.46	I,	18.87)	
		(A-B-H)	(CHCl ₃)		(49.02	3.23	10.02)			

31	92	7	3310, 1635, 1536	1.02 (3H, d, 7), 4.50 (1H, d, 15), 4.95 (1H, m), 5.06 (1H, d, 15), 6.5—7.1 (2H, m), 7.1—7.9 (1H, m), 7.50 (2H, C ₁₉ H ₁₇ CIF ₂ N ₄ O ₂	56.10 4.21	13.77 Cl 8.71
32	74	•	3430, 1655, 1585,	u, 9), 7.77 (111, 3), 7.70 (211, 4), 53, 50, 60 (111, 4), 15), 6.88 (111, brd), 7.11 (111, dd, 9, 2), 7.35 (111, C ₁₉ H ₁₇ Cl ₃ N ₄ O ₂		;
33	77	ν.	1505 (CHCl ₃) 3375, 1666, 1540	d, 2), 7.45 (2H, d, 8), 7.54 (1H, d, 9), 7.78 (1H, s), 7.83 (2H, d, 8), 7.84 (1H, s) 1.22–7.9 (1H, m), 7.77 (1H, $_{co}H_{17}F_{s}N_{\phi}O_{s}$) 1.08 (3H, d, 7), 4.50 (1H, d, 15), 4.98 (1H, m), 5.11 (1H, d, 15), 6.6–7.2 (2H, m), 7.2–7.9 (1H, m), 7.77 (1H, $_{co}H_{17}F_{s}N_{\phi}O_{s}$)		12.48) 12.72
	5	(A-H)	(KBr)	s), 7.80 (2H, d, 8), 8.10 (1H, s), 8.11 (2H, d, 8).	$(54.75 4.07 441 (M^+ + 1) 4$	(54.75 4.07 12.85) 441 (M + ±1) 421 358 224 216
(2K, 3K)- $(-)$ -33	18	UII [140—148]*)	$[\alpha_{\rm Jp} = 103]$ (c=0.96, CHCl ₃)		173 (100%), 14	173 (100%), 145, 131, 127, 82, 70
(25,35)-	82		$[\alpha]_{D} + 106^{\circ}$	Identical with that of 33 $C_{20}H_{17}F_5N_4O_2$		
(+)-33	ţ	48]"	$(c=0.98, CHCl_3)$	U1) 22 (C 0 FF U1) 01 2 (F 01) 110 76 7 (31 F 11) 07 3 (31 F 11) 0	69 2 91.05	11 84
इ	/9	186 (A-H)	3360, 1665, 1530 (KBr)	0.99 (5H, a, 1), 4.40 (1H, a, 15), 5.49 (zH, m), 5.08 (1H, a, 15), 6.84 (1H, 01 a), 7.10 (1H, au, 2), 7.57 (1H, d, 9), 7.79 (2H, d, 9), 7.78 (1H, a), 8.804 (2H, d, 9)	(51.14	11.82)
(2R, 3R)-	75		$[\alpha]_{D}$ – 115°		475, 473 (M ⁺	+1), 455, 453, 392, 390,
₹ -(-)	;	(A-H)	$(c=1.01, CHCl_3)$	E TIPA OND RESTAURA OPEN RESTAURA FOR STONOGRAM AND AND STONOGRAM	258, 256,	ૢૺ
32	62	204207 (A-H)	3450, 1660, 1525, 1500 (CHCL)	1.04 (3H, d, 7), 4.48 (1H, d, 14), 4.76 (1H, d, 14), 4.4—5.0 (2H, m), 7.1 (1H, brd), 7.28 (4H, s), 7.69 (2H, d,	2 54./4 4.13 (54.41 4.51	12.76 F 12.95)
36	69	184—186	3370, 3220, 1671,	$\frac{1.06}{2.00}$ (3H, $\frac{1.06}$		12.72
12	84	(A) 176—177	1500 (K.Br) 3360, 3250, 1668.	s), 7.64 (2H, brs), 7.76 (1H, s), 8.00 (1H, s), 7.36 (1H, brs), 6.5—7.1 (2H, m), 7.1—7.8 (4H, m), 7.81 (2H, C, h, F, K, V, O)	52.41 3.52	12.22 F 24.87
5	2	(W)	1546 (KBr)		(52.31	ĹĽ,
38	89	223—225	3310, 1668, 1534	0.93 (3H, d, 7), 4.57 (1H, d, 14), 4.63 (1H, m), 4.83 (1H, d, 14), 5.67 (1H, s), 7.38 (4H, s), 7.5—8.1 (3H, m), $C_{20}H_{17}CIF_4N_4O_2$	2 52.58 3.75 (57.87 3.96	12.26 F 16.63
œ.	77	(A-H) 185—186	(K.Br) 3420, 3280, 1644		57.08	, (I,
3	:		(KBr)		(57.08	13.06 F 8.75)
\$	99	4	3270, 1646, 1546	$0.79(3H, d, 7)$, $2.3-2.8(2H, m)$, $2.8-3.2(2H, m)$, $3.91(1H, d, 15)$, $4.64(1H, br)$, $4.76(1H, d, 15)$, $5.17(1H, C_{21}H_{21}CH_2N_4O_2H_{21})$, $6.66(1H, br)$, $6.78(1H, br)$, $6.78(1H, br)$, $6.78(1H, br)$	2 58.00 4.8/	12.88
14	56	(A-H) 204—206	(KBr) 3450, 1665, 1622,	ord), 6.05 (1H, ord), 6.5—7.0 (zH, iii), 7.9—7.0 (tH, iii), 7.21 (HI, 5), 7.70 (tH, 5), 7.81 (tH, 5) (tH, 5) (3H, $C_{21}H_{19}CIF_{2}N_{4}O_{2}$ 1.00 (3H, d, 7), 4.49 (1H, d, 14), 4.9 (1H, m), 5.05 (1H, d, 14), 5.45 (1H, brs), 6.53 (1H, d, 16), 6.5—7.0 (3H, $C_{21}H_{19}CIF_{2}N_{4}O_{2}$	58.27	I.
		(A-H)	1500 (CHCl ₃)	(1H, d, 16), 7.80 (1H, s), 7.84 (1H, s)	(58.68	[ב,
42	93	_	3300, 1657, 1617	1.00 (3H, d, 7), 4.51 (1H, d, 14), 5.0 (1H, m), 5.08 (1H, d, 14), 5.39 (1H, brs), 6.64 (1H, d, 16), 6.4—7.1 (3H, $C_{22}H_{19}F_{5}N_4O_2$	56.65 4.11	12.01 F 20.37
() R 3 R)-	71	(A-H) 209—210	(Rb r) [₀] ₂ = 83°	101, 7,2-7,4 (H; M;		, II,
(-)-43	•	(A-H)	$(c = 1.04, \text{CHCl}_3)$	4, s), 7.72 (1H, d, 16), 7.80 (1H, s), 7.85 (1H, s)	4.55	ĹŢ,
(2R, 3R)-	72	Oil	$[\alpha]_{\rm b} - 56^{\circ}$	$0.98(3H, d, 7), 4.48(1H, d, 14), 4.9(1H, m), 5.03(1H, d, 14), 6.53(1H, d, 16), 6.5-7.7(8H, m), 7.70(1H, d, C_{22}H_{19}F_5N_4O_3)$	483 (M ⁺ +1), 40 (100%) 161 82	400, 258, 224, 215 32 70
4-(-)	07	[ou (dec.)]" Oil	$(c=0.78, \text{CHCl}_3)$	10, 111 (41), 120, 120, 111, 8), 120, 111, 8), 120, 111, 8), 120, 111, 8), 120, 111, 8), 120, 111, 8), 120, 111, 8, 120, 1		
$(20,30)^{-}$	60	$[103-106]^{ti}$	$(c=1.39, CHCl_3)$	8), 4-72 (111), 4, 1-7), 5-30 (111), 61), 5-32 (111), 61, 1-7), 632 (111, 41), 111, 112, 113, 113, 113, 113, 113, 113		(IL
94	73	46	3110, 1638, 1610		55.51 4.21	12.33 F 20.90
74	52	(E) 155—157.5	(KBr) 3430, 3170, 1646,	m), 7.00 (1H, S), 7.69 (1H, S) $(1H, d, 1d)$, 5.22 (1H, br), 5.33 (1H, d, 14), 5.46 (1H, br), 6.5—7.1 (2H, m), $C_{21}H_{19}F_{5}N_{4}O_{2}$ 1.16 (3H, d, 7), 3.16 (3H, S), 4.43 (1H, d, 14), 5.22 (1H, br), 5.33 (1H, d, 14), 5.46 (1H, br), 6.5—7.1 (2H, m), $C_{21}H_{19}F_{5}N_{4}O_{2}$		i II
		(E-H)	1501 (KBr)	H, s), 7.78 (1H, s)	(55.54	12.24 F 20.75)
84	5	174—175 (A-H)	3420, 1680, 1626 (CHCL)	1.12 (3H, d, 7), 3.11 (3H, s), 4.48 (1H, d, 14), 4.91 (1H, d, 14), 5.20 (2H, bf), 7.1—7.9 (3H, m), 7.29 (4H, s), — C21 H19CH4, 1.402, 7.69 (1H, s), 7.78 (1H, s)	2 53.37 4.07 (53.31 4.22	i ii
49	19	_	3430, 3100, 1648,	-	59.13	(II,)
3	9	(E-H)	1494 (KBr) 3430 1659 1621	7.17 (1H, d, 15), 7.2—8.1 (5H, m), 7.43 (1H, s), 7.47 (1H, s), 7.78 (1H, d, 15) 141 (3H d 6 5), 4.60/2H, s), 4.5—5.0 (1H, m), 6.41 (1H, brd, 9), 7.29 (4H, s), 7.65 (4H, s), 7.82 (1H, s), 7.87 (1H, s) — C., H, «CIF, N, O,	(59.47 4.98 , 54.74 4.13	12.40 F 8.28) 12.77 F 12.99
5	3	(B-H)	1599 (CHCl ₃)		(54.77	щ
99	87	170—172 (F. C)	3400, 1655	3.8-4.0 (2H, m), 4.62 (2H, s), 5.85 (1H, br), $6.6-7.0$ (3H, m), $7.3-7.7$ (1H, m), 7.35 (2H, d, 9), 7.61 (2H, d, C ₁₈ H ₁₅ CIF ₂ N ₄ O ₂ 0), 7.83 (1H, s) 8.09 (1H, s)	2 55.04 3.85 (55.24 3.65	14.26
57	9	∞	3390, 1588	0.645(3H, d, 6.5), 4.50(1H, d, 9), 6.5), 4.78(1H, d, 15), 5.5(1H, br), 5.54(1H, d, 15), 5.60(1H, d, 9), 7.05(1H, d, 9), 7.05(1	45.44	11.78
28	86		3380, 1770, 1705,	aa, 83, 21, 731 (111, a, 21, 747 (111, a, 82), 731 (211, a, 7), 730 (111, 8), 732 (211, a, 7) 1.35 (311, a, 7), 440 (111, a, 15), 4.90 (111, a, 15), 5.16 (111, a, 7), 5.3 (111, br), 6.6—7.1 (211, m), 7.54 (111, s), C ₂₀ H ₁₅ CIF ₂ N ₄ O ₃	435, 433 (M ⁺	435, 433 (M ⁺ +1), 352, 350, 334, 332,
		[143—150]"	1615 (CHCl ₃)	7.4—8.1 (4H, m), 8.13 (1H, s)	719, 711, 774 (10070), 210, 206, 141

a) Recrystallization solvent: A, AcOEt; H, hexane; B, benzene; E, ether; M, MeOH; C, CHCl₃. b) Chemical shifts are given with proton numbers, absorption patterns, and coupling constants in Hz in parentheses. c) CD₃OD was used as a solvent. d) Pyridine-a₅ was used as a solvent. e) DMF-a₇ was used as a solvent. f) A mixture of CDCl₃ and CD₃OD (10:1) was used as a solvent. g) DMSO-a₆ was used as a solvent. h) HCl salt. i) HNO₃ salt.

Me₄Si as an internal standard. Mass spectra (MS) were obtaind on a JEOL JMS D300 spectrometer. Optical rotations were determined on a Perkin-Elmer 141 spectrometer at 25 °C. Thin-layer chromatography (TLC) was performed on TLC plates, Silica gel 60 $\rm F_{254}$ precoated, layer thickness 0.25 mm (E. Merck), and spots were made visible by ultraviolet (UV) irradiation, by spraying with vanadic acid–sulfuric acid followed by heating, or by iodine treatment. Chromatography columns were prepared with silica gel (60—110 mesh, Kanto Chemical Co., Inc.) and preparative TLC was carried out on plates of Silica gel 60 $\rm F_{254}$, layer thickness 2 mm (E. Merck). The amount of silica gel used and the developing solvents are shown in parentheses. The abbreviations used are as follows: s, singlet; d doublet; dd, doublet of doublets; dq, doublet of quartets; t, triplet; q, quartet; qd, quartet of doublets; m, multiplet; br, broad.

(2R,3R)-3-Amino-2-(2,4-difluorophenyl)-1-(1H-1,2,4-triazol-1-yl)-2-butanol [(2R,3R)-3a] A solution of (2R,3R)-2a¹⁾ (5.00 g) in EtOH (100 ml) was shaken with 10% palladium—carbon (1.30 g) under an H₂ atmosphere for 1 h. The catalyst was filtered off using Celite, and the filtrate was concentrated under reduced pressure to give (2R,3R)-3a (4.56 g, 100%) as a solid, which was recrystallized from benzene to afford a pure specimen, mp 154—155 °C: $[\alpha]_D - 73^\circ$ (c = 1.06, CHCl₃). Anal. Calcd for C₁₂H₁₄F₂N₄O: C, 53.73; H, 5.26; N, 20.89. Found: C, 53.59; H, 5.35, N, 20.71. IR $\nu_{\rm max}$ (KBr) cm⁻¹: 3210, 1620, 1600. The NMR spectrum was identical with that of the corresponding racemate.²⁾

 $(2R^*,3R^*)$ -2-(2,4-Diffuorophenyl)-3-(N-methylamino)-1-(1H-1,2,4triazol-1-yl)-2-butanol (4a) and the (2R,3R) Enantiomer [(2R,3R)-4a]i) A solution of $(4R^*,5R^*)$ -5-(2,4-difluorophenyl)-4-methyl-5-[(1H-1,2,4triazol-1-yl)methyl]oxazolidine²⁾ (5a, 941 mg, 3.36 mmol) in tetrahydrofuran (THF, 25 ml) was added dropwise to a suspension of lithium aluminum hydride (127 mg, 3.36 mmol) in THF (8 ml), with ice-cooling and stirring. After stirring at the same temperature for 30 min, a 1 N aqueous solution of NaOH (0.5 ml) was added and the whole was stirred for an additional 1 h. At the end of this time, the mixture was filtered using Celite, and the filtrate was concentrated under reduced pressure to afford 4a (868 mg, 92%) as a solid, which was used without further purification for the next reaction. An analytical sample of 4a, mp 141-145°C, was obtained by recrystallization from AcOEt-hexane. Anal. Calcd for C₁₃H₁₆F₂N₄O: C, 55.31; H, 5.71; F, 13.46; N, 19.85. Found: C, 55.39; H, 5.78; F, 13.63; N, 20.01. IR ν_{max} (KBr) cm⁻¹: 3210, 1610, 1580, 1499. NMR (CDCl₃) δ : 0.90 (3H, dd, J=7, 2Hz), 2.48 (3H, s), 2.96 (1H, qd, J=7, 2Hz), 4.80 (2H, s), 6.55—7.1 (2H, m), 7.1—7.7 (1H, m), 7.77 (1H, s), 7.96 (1H, s).

In a similar way, (2R,3R)-4a was obtained as a crude cake in 95% yield from (4R,5R)-5a, which was prepared as described previously²⁾ by heating equimolar amounts of (2R,3R)-3a and paraformaldehyde in benzene. An analytical sample of (2R,3R)-4a, mp 168—170°C, $[\alpha]_D$ -97.4° $(c=0.96, \text{CHCl}_3)$, was obtained by recrystallization from AcOEt-MeOH. The NMR spectrum was identical with that of the racemate 4a described above.

ii) A 40% methylamine solution in MeOH (0.7 ml) was added to a solution of $1a^{2}$ (racemate, 180 mg) in MeOH (1 ml), and the whole in a sealed tube was heated at 70 °C for 21 h. The solvent was evaporated off under reduced pressure to give a viscous oil (202 mg), which was shown by the NMR spectrum to be a mixture of 4a, 6 and 1a in approximately a 3:1:1 ratio.

This reaction in a scale using 1.00 g of 1a (racemate) at a higher temperature ($100\,^{\circ}$ C) during a longer time ($46\,\text{h}$) afforded an almost pure product 6 as a solid, which was purified by recrystallization from AcOEt-benzene to give a pure specimen ($943\,\text{mg}$, 84%), mp 170—173 °C. Anal. Calcd for C₁₃H₁₅FN₄O: C, 59.53; H, 5.76; F, 7.24; N, 21.36. Found: C, 59.62; H, 5.89; F, 6.95; N, 21.24. IR ν_{max} (KBr) cm⁻¹: 3138, 1621, 1602, 1514, 1492. NMR (DMF- d_7) δ : 1.35 (3H, d, J=6.5 Hz), 2.73 (3H, s), 3.32 (1H, q, J=6.5 Hz), 4.28 (1H, d, J=15 Hz), 4.42 (1H, d, J=15 Hz), 5.85 (1H, br), 6.1—6.5 (3H, m), 7.84 (1H, s), 8.34 (1H, s).

(2*R**,3*R**)-2-(4-Chlorophenyl)-3-(*N*-methylamino)-1-(1*H*-1,2,4-triazol-1-yl)-2-butanol (4c) i) Following a procedure similar to that described for 4a, 4c was prepared as a cake in 90% yield by treatment of $5c^{2}$ (racemate) with lithium aluminum hydride in THF. MS m/z: 281 (M*+1), 223, 222, 198, 139, 125, 111, 70, 58 (100%). NMR (CDCl₃) δ: 0.96 (3H, d, J=6.5 Hz), 2.38 (3H, s), 2.55 (1H, q, J=6.5 Hz), 3.41 (1H, s), 4.46 (1H, d, J=15 Hz), 4.80 (1H, d, J=15 Hz), 7.29 (4H, s), 7.83 (1H, s), 8.05 (1H, s).

ii) A 40% methylamine solution in MeOH (12 ml) was added to a solution of $1c^{2}$ (racemate, 3.00 g) in MeOH (15 ml), and the whole in a sealed tube was heated at 70 °C for 24 h. Removal of the solvent by evaporation *in vacuo* afforded 4c (3.45 g) as a solid, which was used

without further purification for the next reaction. The NMR spectrum was identical with that of the sample obtained above.

(2 R^* ,3 R^*)-2-(2,4-Difluorophenyl)-3-formamido-1-(1H-1,2,4-triazol-1-yl)-2-butanol (7) A solution of N-formylimidazole in CH_2Cl_2 , prepared in situ from formic acid (42 mg, 0.91 mmol) and N,N'-carbonyldiimidazole (147 mg, 0.91 mmol) in CH_2Cl_2 (1.5 ml), was added to a solution of $3b^2$ 0 (racemate, 120 mg, 0.40 mmol) in CH_2Cl_2 (0.5 ml). The mixture was stirred at room temperature for 10 h, after which it was diluted with AcOEt, washed successively with water and brine, and dried over Na_2SO_4 . Evaporation of the solvent under reduced pressure gave a solid, which was recrystallized from AcOEt—hexane to give 7 (75 mg, 57%) as a colorless powder, mp 233—237 °C. Spectroscopic data and elementary analysis data are given in Table III.

(2R*,3R*)-2-(2,4-Dichlorophenyl)-1-(1H-1,2,4-triazol-1-yl)-3-[(trimethylacetyl)amino]-2-butanol (8) Trimethylacetyl chloride (100 mg, 0.83 mmol) was added to a solution of 3b (150 mg, 0.50 mmol) in pyridine (2.5 ml), with stirring at 0°C. After being stirred at the same temperature for 30 min, the mixture was concentrated under reduced pressure and the residue was partitioned between AcOEt and a diluted aqueous solution of NaHCO₃. The organic layer was washed with brine, dried and concentrated *in vacuo* to afford an oily residue, which was chromatographed on silica gel (2 g, benzene–AcOEt, 4:1—1:1, v/v) to give 8 (180 mg, 94%) as an oil. Spectroscopic data is given in Table III.

The amide 8 (140 mg) formed its oxalic acid salt (120 mg), mp 156—160 °C, on being mixed with 1 eq of oxalic acid in ether.

(2 R^* ,3 R^*)-2-(2,4-Difluorophenyl)-3-[(5-methyl-4-hexenoyl)amino]-1-(1H-1,2,4-triazol-1-yl)-2-butanol (9) A solution of 5-methyl-4-hexenoic acid (192 mg, 1.50 mmol) and N,N'-carbonyldiimidazole (243 mg, 0.15 mmol) in THF (5 ml) was warmed at 40 °C for 30 min. To this solution was added 3 a^2) (racemate, 200 mg, 0.75 mmol), and the mixture was stirred at 60—65 °C for 2.5 h. After cooling, the mixture was partitioned between AcOEt and a 5% aqueous solution of NaHCO₃. The organic layer was collected, washed with brine and dried over MgSO₄. The solvent was evaporated off under reduced pressure to give an oily residue, which was chromatographed on silica gel (10 g, benzene–AcOEt, 1:2—1:4, v/v) to afford 9 (193 mg, 65%) as an oil. Spectroscopic data of 9 is given in Table III.

The amide 9 formed its oxalic acid salt, mp $143-145\,^{\circ}$ C, on being mixed with 1 eq of oxalic acid in AcOEt-hexane.

 $(2R^*,3R^*)$ -3-Acylamino-2-aryl-1-(1H-1,2,4-triazol-1-yl)-2-butanols (10—42), the (2R,3R) Enantiomers [(-)-33, (-)-34, (-)-43 and (-)-44] and the (2S,3S) Enantiomer [(+)-33] As a typical example, the preparation of (-)-33 is described. 4-(Trifluoromethyl)benzoyl chloride (218 mg, 1.04 mmol) was added to a solution of (2R,3R)-3a (200 mg, 0.75 mmol) in pyridine (2 ml), with stirring and ice-cooling. After 1 h, MeOH (0.3 ml) was added to the mixture, which was then stirred for 10 min. The solvent was removed under reduced pressure, and a diluted aqueous solution of NaHCO₃ was added to the residue. Extraction with AcOEt and evaporation of the solvent *in vacuo* gave an oily residue, which was chromatographed on silica gel (10 g, benzene - AcOEt, 1:1, v/v) to afford (-)-33 (266 mg, 81%) as an oil, $[\alpha]_D - 105^\circ$ $(c = 0.96, \text{ CHCl}_3)$. Spectroscopic data is given in Table III.

The amide (-)-33 formed its HCl salt, mp 140—148 °C, on being mixed with a 4 N HCl dioxane solution (1 eq) in AcOEt-benzene.

In a similar way, other amidoalcohols were prepared by acylation of the aminoalcohols 3a-c with the corresponding acyl chloride. Crystalline compounds were purified by recrystallization of the crude products from an appropriate solvent. The amide 32 was converted to its oxalic acid salt, mp $222-226\,^{\circ}\mathrm{C}$, on being mixed with leq of oxalic acid in AcOEthexane. Oily products were purified by column chromatography, then converted to crystalline salts by mixing them with oxalic acid or HCl in an organic solvent. The yields, physical and spectroscopic data and elementary analysis data (or MS data) of these amidoalcohols are given in Table III

(2R,3R)-2-(2,4-Difluorophenyl)-3-[N-methyl-N-[4-(trifluoromethoxy)-benzoyl]amino]-1-(1H-1,2,4-triazol-1-yl)-2-butanol [(-)-45] and the (2R*,3R*)-N-Methylamidoalcohols (46—49) As a typical example, the preparation of 46 is described. 4-(Trifluoromethyl)benzoyl chloride (375 mg, 1.80 mmol) was added to a solution of 4a (428 mg, 1.50 mmol) and triethylamine (404 mg, 4.00 mmol) in $\mathrm{CH_2Cl_2}$ (8 ml). The mixture was stirred at room temperature for 30 min. At the end of this time, MeOH (0.5 ml) was added to this mixture and stirring was continued for 15 min, after which the solvent was removed by evaporation under reduced pressure and a diluted aqueous solution of NaHCO₃ was added to the residue. Extraction with AcOEt and evaporation of the solvent gave a

crystalline mass, which was recrystallized from ether to afford 46 (504 mg, 73%), mp 144—146 °C. Spectroscopic data and elementary analysis data are given in Table III.

In a similar way, other N-methylamidoalcohols were prepared by acylation of N-methylaminoalcohol 4a or 4c with the corresponding acyl chloride. The amide (-)-45 was obtained from (-)-4a as an oil, which formed its HNO_3 salt, mp $103-106\,^{\circ}C$, on being mixed with leq of concentrated HNO_3 in ether. Amides 47-49 were crystalline and purified by recrystallization from an appropriate solvent. The yields, physical and spectroscopic data and elementary analysis data of these N-methylamidoalcohols are given in Table III.

 $(2R^*,3S^*)$ -2-(4-Chlorophenyl)-3-methanesulfonyloxy-1-(1*H*-1,2,4-triazol-1-yl)-2-butanol (51) Methanesulfonyl chloride (140 mg, 1.31 mmol) was added to a solution of 50^2) (racemate, 157 mg, 0.59 mmol) in pyridine (2 ml) with stirring at 0 °C. After 2 h, the mixture was partitioned between ether and water. The organic layer was washed with brine and dried. Evaporation of the solvent under reduced pressure gave 51 (193 mg, 95%) as an oil, which was used without further purification for the next reaction. NMR (CDCl₃) δ : 1.27 (3H, d, J=6 Hz), 2.97 (3H, s), 4.6 (1H, br), 4.66 (2H, s), 4.85 (1H, q, J=6 Hz), 7.1—7.4 (4H, m), 7.78 (1H, s), 8.03 (1H, s).

(2 R^* ,3 S^*)-3-Azido-2-(4-chlorophenyl)-1-(1H-1,2,4-triazol-1-yl)-2-butanol (52) A mixture of 51 (193 mg, 0.56 mmol), sodium azide (188 mg, 2.89 mmol), ammonium chloride (30 mg, 0.56 mmol) and N,N-dimethyl-formamide (DMF, 3 ml) was stirred at 120 °C for 2 h. After cooling, the mixture was partitioned between benzene and water. The organic layer was washed with brine and concentrated *in vacuo* to give an oily residue, which was purified by column chromatography (5 g, AcOEt–hexane, 2:1, v/v) to give 52 (150 mg, 92%) as an oil. MS m/z: 295, 293 (M^+ + 1), 224, 222 (100%), 141, 139, 127, 125. IR v_max (CHCl₃) cm $^{-1}$: 3410, 2110. NMR (CDCl₃) δ : 1.11 (3H, d, J=6.5 Hz), 3.55 (1H, q, J=6.5 Hz), 4.58 (2H, s), 5.14 (1H, br s), 7.2—7.6 (4H, m), 7.82 (1H, s), 8.01 (1H, s).

(2 R^* ,3 S^*)-2-(4-Chlorophenyl)-1-(1H-1,2,4-triazol-1-yl)-3-[[4-(trifluoromethyl)benzoyl]amino]-2-butanol (54) A solution of 52 (122 mg, 0.42 mmol) in EtOH (3 ml) was shaken with 10% palladium-carbon (35 mg) under an H_2 atmosphere for 1 h. The catalyst was filtered off using Celite, and the filtrate was concentrated under reduced pressure to give the aminoalcohol 53 (111 mg, 100%) as an oil, which was then dissolved in pyridine (1.5 ml) and treated with 4-(trifluoromethyl)benzoyl chloride (97 mg, 0.47 mmol) at 0°C for 30 min. Work-up in the usual manner, followed by purification by column chromatography (5 g, AcOEt-hexane, 2:1, v/v), and then by recrystallization from benzene-hexane gave 54 (109 mg, 60% yield from 52), mp 175—177 °C. Spectroscopic data and elementary analysis data are given in Table III.

(\pm)-1-[(4-Chlorobenzoyl)amino]-2-(2,4-difluorophenyl)-3-(1H-1,2,4-triazol-1-yl)-2-propanol (56) To a solution of 55²⁾ (racemate, 81 mg, 0.32 mmol) in pyridine (1 ml) was added 4-chlorobenzoyl chloride (72 mg, 0.41 mmol), with stirring at 0 °C. After 10 min, the mixture was partitioned between AcOEt and water. The organic layer was washed with brine and concentrated *in vacuo* to give a crystalline residue, which was recrystallized from CHCl₃-ether to afford 56 (109 mg, 87%), mp 170—172 °C. Spectroscopic data and elementary analysis data are given in Table III.

(2 R^* ,3 R^*)-3-[(4-Chlorobenzenesulfonyl)amino]-2-(2,4-dichlorophenyl)-1-(1H-1,2,4-triazol-1-yl)-2-butanol (57) A solution of 3b (racemate, 50 mg, 0.166 mmol) and 4-chlorobenzenesulfonyl chloride (53 mg, 0.25 mmol) in pyridine (1 ml) was stirred at 0 °C. After quenching the reaction with MeOH (0.1 ml), the mixture was partitioned between AcOEt and water. The organic layer was dried and concentrated *in vacuo* to give an oily residue, which was purified by column chromatography (1 g, AcOEtbenzene, 1:3, v/v) to yield 57 (32 mg, 40%) as a solid. Recrystallization from ether gave an analytical sample, mp 104—108 °C. Spectroscopic data and elementary analysis data are given in Table III.

(2R*,3R*)-3-(4-Chlorophthalimido)-2-(2,4-difluorophenyl)-1-(1H-1,2,4-triazol-1-yl)-2-butanol (58) A solution of 3a (150 mg, 0.56 mmol), 4-chlorophthalic anhydride (124 mg, 0.68 mmol) and triethylamine (5 mg, 0.05 mmol) in toluene (4 ml) was heated under reflux for 4 h with azeotropic removal of water. The mixture was then diluted with AcOEt and washed with a diluted aqueous solution of NaHCO₃. The organic layer was dried and the solvent was distilled off under reduced pressure. The residue was purified by preparative TLC (AcOEt) to give 58 (238 mg, 98%) as a colorless foam. Spectroscopic data of 58 is given in Table III.

The imide 58 formed its $\bar{H}NO_3$ salt, mp 143—150 °C, on being mixed with 1 eq of concentrated HNO_3 in ether.

References

- Part III: T. Konosu, T. Miyaoka, Y. Tajima and S. Oida, Chem. Pharm. Bull., 39, 2241 (1991).
- Part II: T. Konosu, Y. Tajima, N. Takeda, T. Miyaoka, M. Kasahara, H. Yasuda and S. Oida, *Chem. Pharm. Bull.*, 38, 2476 (1990).
- Y. Aoyama, Y. Yoshida and R. Sato, J. Biol. Chem., 259, 1661 (1984); J. M. Trzaskos, W. D. Bowen, A. Shafiee, R. T. Fisher and J. L. Gaylor, ibid., 259, 13402 (1984); G. J. Schroeper, Ann. Rev. Biochem., 51, 555 (1982).
- 4) T. Hata, Y. Furukawa, T. Konosu and S. Oida, *Bull. Chem. Soc. Jpn.*, in press.
- 5) T. Hata, H. Hanzawa, T. Konosu and S. Oida, *Anal. Sci.*, **6**, 789 (1990).