SYNTHESIS OF 3-THIENYL-SUBSTITUTED ISOTHIAZOLINES-2 AND 1,2,4-THIADIAZOLES BASED ON NITRILE SULFIDES OF THE THIOPHENE SERIES

M. M. Krayushkin, M. A. Kalik, and A. Ya. Kudryavtseva

UDC 547.732

The reaction of substituted α - and β -thienylcarboxamides with chlorocarbonylsulfenyl chloride gave 5-thienylsubstituted 1,3,4-oxathiazol-2-ones. Decarboxylation of the latter by heating in o-dichlorobenzene generated in situ α - and β -thienylnitrile sulfides, which in the presence of dipolarophiles [dimethyl fumarate, Nphenylmaleinimide, chloro(trichloro)acetonitrile] give the corresponding 3-thienyl-substituted Δ^2 -isothiazolines and 5-chloromethyl(trichloromethyl)-1,2,4-thiadiazoles.

Keywords: thienylcarboxamides, chlorocarbonylsulfenyl chloride, 5-thienyl-substituted 1,3,4-oxathiazol-2-ones, nitrile sulfides, 3-thienyl-substituted Δ^2 -isothiazolines and 5-chloromethyl(trichloromethyl)-1,2,4-thiadiazoles.

In earlier work we obtained 2-methylthio(methylsulfonyl)-3-thiophenecarbonitrile oxides; it was shown that they enter readily into 1,3-dipolar ring addition reactions with the formation of 3-thienyl-substituted five-membered heterocycles of type A [1, 2].

The present article describes the synthesis of sulfur analogs of similar compounds (Δ^2 -isothiazolines and 1,2,4-thiadiazoles), containing the endocyclic fragment C==N-S and which are of interest from the standpoint of biological activity [3]. The possibility has been shown of using α - and β -thienylnitrile sulfides, generated *in situ* from the corresponding 1,3,4-oxathiazolones-2.

The oxathiazolones (1a-c) were obtained with high yields by the reaction of α - and β -thienylcarboxamines (2a-c) with chlorocarbonylsulfenyl chloride [4]. The IR spectra contain a doublet band of the carbonyl group in the region 1740-1770 cm⁻¹; this is noticed for some unsaturated compounds, in particular Δ^2 -oxazolinones-5, and can be the result of an interaction of the vibrations of the C=O group with adjacent bonds or Fermi resonance [5].

The unstable thienylnitrile sulfides (3) were generated by the thermal decarboxylation of the oxathiazolones 1a-c [6]. Performance of the reaction in the presence of an excess of activated dipolarophiles (dimethyl fumarate and N-phenylmaleinimide [7]) leads to 3-thienyl-substituted $trans-\Delta^2$ -isothiazoline-4,5-dicarboxylates (4a-c) and cis-N-phenyl- Δ^2 -isothiazoline-4,5-dicarboxylates (5a-c), respectively, the spatial structure of which was confirmed by PMR spectra (see scheme below). Besides the adducts, the mixture contains the corresponding nitriles (6a-c) (13-18%), which were isolated by column chromatography. The compound 6b has also been synthesized independently by the dehydration of 2-methylthio-5-methyl-3-thiophene aldoxime [1]. The nitriles formed are probably the products of the thermal desulfuration of the nitrile sulfides 3, running in parallel. In fact, in the absence of dipolarophiles heating of 1c gave only 2-methylsulfonyl-5-methyl-3-thiophenecarbonitrile 6c (80-90%) and sulfur.

It must be pointed out that, in distinction from the analogous nitrile oxides, a change in the nature of the substituent in the thiophene ring has no noticeable effect on the yield of the product of ring addition and the duration of the reaction; on the contrary, the nature of the dipolarophile acquires the decisive role. Thus, the reaction with styrene, which proceeds with a high yield with the nitrile oxides of the thiophene series, did not lead to the corresponding adduct in the instance of the nitrile sulfide 3c: only the nitrile 6c was formed with a yield of $\sim 70\%$. The influence of the nature of the substituent in the dipolarophile shows clearly in the reaction of the nitrile sulfide 3c with substituted acetonitriles. Thus, with trichloroacetonitrile the yield of 5-trichloromethyl-1,2,4-thiadiazole (7), the structure of which has been confirmed by the 13 C NMR spectrum,

N. D. Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences, 117913 Moscow. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 8, pp. 1892-1897, August, 1992. Original article submitted August 9, 1991.

reaches 50-60%, while with monochloroacetonitrile only 14-30% of the 5-chloromethyl-substituted thiadiazole (8) is formed (depending on the excess of the dipolarophile); the reaction does not take place with unsubstituted acetonitrile nor with cyanacetamide: only desulfuration of the nitrile sulfide 3c occurs. A similar activating effect of electron-acceptor substituents has been noticed in [8] for aromatic nitriles.

The authors are grateful to I. P. Yakovlev for evaluation of the IR spectra.

EXPERIMENTAL

The IR spectra were taken on a Specord IR-275 spectrometer; the ¹H NMR spectra were obtained on Bruker WM-250 (250 MHz) and Jeol FX-90Q (90 MHz) spectrometer, and the ¹³C NMR spectrum on a Bruker AM-300 instrument. The molecular masses were determined on Varian MAT CH-6 and Varian MAT 311A spectrometers at an ionizing potential of 70 eV, with direct introduction of the substance into the ion source. TLC was carried out on Silufol UV-254 sheets (eluent ethyl acetate:hexane) and column chromatography on silica gel L (100-160 mesh). Elemental analysis data, constants, yields, and spectral characteristics of the synthesized compounds are presented in Table 1.

Amide of 2-Methylthio-5-methyl-3-thiophenecarboxylic Acid (2b). A sample of 5 g (3 mmoles) of 2-methylthio-3thiophenecarboxylic acid [9] and 8.4 ml (12 mmoles) of $SOCl_2$ was refluxed for 30 min; the excess of $SOCl_2$ was stripped off, the residue dissolved in benzene and purged for 1 h with a stream of dry NH₃. The precipitate was filtered off, washed with cold water, and recrystallized.

5-Thienyl-Substituted 1,3,4-Oxythiazol-2-ones (1a-c). A solution of 10 mmoles of amide 2a-c in 20 ml toluene was treated with 15 mmoles CICOSCI, kept for 2 h at 70-80°C, and then for 6 h at 90-100°C; the solvent was stripped off and the residue recrystallized.

Compounds
Synthesized
haracteristics of
E 1. C
ABLI

stics of Synthesized Compounds	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1750-1770 (C=O) 7.45 t (1H, 4-H, $I_{4,5} = 5, 25, I_{4,3} = 185(20), 111(100), C_6H_3NO_5S_2 = 4.0); 7.62 d (1H, 5-H, I_{5,4} = 5.25); 109(8) (185.2) (185.2)$	$1755 - 1770 (C = 0) 2.35 d(3H, CH_3); 2.52 (3H, S(H_3); 245 (67), 171 (100), C_8H_7NO_8S_3 39.28 2.79 39.26 5.64 (6.95 d_2(H, 4-H)); 154 (17), (245.3) (245.3) 39.16 2.88 39.21 5.70 (245.3) 39.16 39.$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c} \begin{array}{c} 7125\\ 1725\\ 1725\\ 12,5\\ 0CH_{3}); \ 4.82 \ d_{2},5.08 \ d_{2}(2H,\ 5-H,\ 5-H,\ 226(55),\ 194(100)\\ 1_{4,5}=4); \ 7.06 \ t(1H,\ 4-H,\ 7_{4,5}=\\ -5.5,\ I_{4,3}=4); \ 7.06 \ t(1H,\ 4-H,\ I_{4,5}=\\ -5.5,\ I_{4,3}=4,\ 0); \ 7.37-7,\ 43m \cdot (2H,\ 4.91,\ 100)\\ 22.68 \ d_{2}(55),\ 194(100)\\ 1285.4) \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Characteristics of Synthesized Compounds	IR spectrum $(CHCl_3, \vee, cm^{-1})$ PMR $\begin{pmatrix} GDC \\ J, H \end{pmatrix}$	1750-1770 (C=0) 7.45 t (1H, $= 4.0$) 7.65 t $(1H, = 7.72 + 0.0)$	1755-1770 (C=0) $\begin{bmatrix} 2.35 & d & (3H) \\ 6.95 & d_2 & (1H) \end{bmatrix}$	$\begin{array}{ccccc} 1150 & (SO_2) & 2.59 & d(3H, 1330 & (SO_2) & 7.29 & d(1H, 1740 - 1780 & (C=0) & 7.29 & d(1H, 114, 1740 & (C=0) & 7.29 & 0 & $	$\begin{array}{cccc} 1655 & (C=0) & c 2.32 d & (31) \\ 3050 & (NH_2) & 7.12 d & (1H) \\ 2450 & \end{array}$	1725 (C=0) $3.78 \le (3H, -1725)$ (C=0) $3.78 \le (3H, -125)$ (CCH ₃); 4.8 $7_{4,5} = 4$); 7 $7_{4,5} = 4$); 7 $7_{4,5} = 5.5$, $7_{4,3} = 7$,	1735 (C=0) $\begin{bmatrix} 2.44 & d & (3H_{1}) \\ 2.55 & (3H_{2}) \\ 4.25 & (3H_{2}) \\ 0CH_{3}) \\ 4.71 \\ 0CH_{3} \end{bmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Mp, °Ca	81-83	120-122	141-143	139-142	44-46	99,5-102	107-109
TABLE 1. C	Yield,	1a ⁶ 67	1b 71	1c 80	2b 90	45 45	4 b 50	4c 63

TABL	.E 1 (c	ontinued)								
Com- pound	tield,	T. mp.	IR spec (CHCl ₃ ,	ctrum , v, cm ⁻¹)	PMR spectrum (CDCl₃, δ, ppm, J, Hz)	Mass spectrum m/z (I, %)	Empirical formula	Found/Cal G H	culated.	% Z
53	99	195 197	1710 đ	(C=0)	$b_{4,86}$ d, 4.98 d (2H, 4-H, 5-H, $J = 10.5$); 6.85 t (1H, 4'-H, $I_{4,5} = 5$, $I_{4,3} = 3$); $7.05 - 7.3$ m (6H, Ph, 5'-H);	314(98), 201(8), 166(100)	C ₄₅ H ₄₀ N ₂ O ₂ S ₂ (314.4)	57.30 3.24 57.30 3.21	<u>19.70</u> 20.39	3.91
56	65	130-132	1725 ^d	(C=0)	7.60 d (1H, 3'-H, $J_{3,4} = 3$) e2,45 d (3H, CH ₃); 2.55 s (3H, SCH ₃); 5.2 d, 5.5 d (2H, 4-H, 5-H, $J_{4,5} = 11.04$); 7.2-7.6 m(6H, Ph,	374(27), 328(6), 202(13), 173(100)	C ₁₇ H ₁₄ N ₂ O ₂ S ₃ (374.5)	54.66 4.13 54.52 3.77	25.82 7 25.69 7	.78
ΰc	61	173-175	1145 1320 1720	(SO_3) (C=0)	$\begin{array}{l} 4^{4} \cdot \mathbf{H}; \\ 2.55 \mathrm{d} (3\mathbf{H}, \mathbf{CH}_{3}); 3.35 \mathrm{s} (3\mathbf{H}, \mathrm{SO}_{3}\mathbf{CH}_{3}); \\ 5.15 \mathrm{d}_{2} 5.25 \mathrm{d} (2\mathbf{H}, 4\text{-}\mathbf{H}, 5\text{-}\mathbf{H}, J_{4, b} = \\ = 10); 7.15 \mathrm{d} (1\mathbf{H}, 4^{-}\mathbf{H}); 7.3-7.5 \mathrm{m} \end{array}$	406 (20), 326 (33), 299 (100)	C ₁₇ H ₁₄ N ₂ O ₄ S ₃ (406.5)	50.52 3.68 50.22 3.47	<u>23.65</u> 23.67	0.89
6 b	88 85	26-28	2238	(C=N)	(5H, Ph) 2.45 d (3H, CH ₃); 2.6 s (3H, SCH ₃); 6.8 d (1H, 4.H)	169(100), 154(83), 136(25), 122(16), 136(25), 122(16), 136(25), 122(16), 136(25), 122(16), 136(25),	C ₇ H ₇ NS ₂ (169.8)	<u>49.82</u> 4.13 49.67 4.17	37.53 8 37.89 8	1.29
90	80	130- 132	1155 1340	(SO_2)	2.58 d (3H, CH ₃); 3.3 s (3H, SCH ₃); 7.10 d (1H, 4-H)	201(32), 186(19), 148(10), 146(18), 138(100), 146(18),	C ₇ H ₇ NO ₂ S ₂ (201.3)	<u>41.77</u> <u>3.46</u> <u>41.77</u> <u>3.51</u>	$\frac{31.44}{31.86}$ $\frac{6}{6}$	5.59 5.96
2	52f (59)	144-146	2220 1150 1320	(SO_2)	2.50 d (3H, CH _a); 3.58s (3H, SO ₂ CH _a); 7.41 d (1H, 4-H)	377 (100), 362 (39), 340 (24), 314 (71), 779 (29)	B C ₉ H ₇ Cl ₃ N ₃ O ₂ S ₃ (377.7)	28.68 2.19 28.62 1.87	25.20 7	.44
æ	$\begin{bmatrix} 37 f \\ (14) \end{bmatrix}$	130132	1145 1320	(SO_2)	$ \begin{array}{l} 2.50d_{1} \left(3H, \mathrm{CH}_{3} \right); 3.67s \left(3H, \mathrm{SO}_{2} \mathrm{CH}_{3} \right); \\ 5.0 \mathrm{s} \left(2H, \mathrm{CH}_{3} \mathrm{CI} \right); 7.49 \mathrm{d} \left(1H, \mathrm{d} \mathrm{-H} \right) \end{array} $	308(100), 295(20), 245(23), 172(18)	g C ₉ H ₉ ClN ₂ O ₂ S ₃ (308.8)	35.49 2.92 34.99 2.94	<u>30.66</u> <u>31.15</u> 9	.07
Notes hexan	s. a) Elu le (4a. 1	hent hexane	tethyl acets hexane and	ate 2:1 (4a. d FiOH (6	, 5b, c, 7, 8), 1:1 (4c), 5:1 (4b); solvent c) H ₂ O (2b), b) Obtained earlier by me	for recrystallizatio	n EtOH (1a-c , 4 ield of 44%. c) F	c, 5a, c, 7, 8 MR spectru	., E	
ii CD 0	3CN. d) IR spectn	um: as KBr	tablets. e) I	PMR spectrum in $CD_3CN:C_6D_6$ 1:1. f) T	enfold excess of dir	olarophile. g) Fo	und/Calculate	Ŕ	
Ĵ	a(1.0	11.04/10.1	7, UJ 11.4 7	2/ TT. 70.						

(contin

щ
BI
Y
-

Nitrile of 2-Methylsulfonyl-5-methyl-3-thiophenecarboxylic Acid (6). A solution of 0.3 g (1.1 mmoles) of the oxathiazolone 1c in 5 ml o-C₆H₄Cl₂ was kept in a stream of argon for 40 min at 160°C; the solvent was removed in vacuum and the solid residue recrystallized.

Nitrile of 2-Methylthio-5-methyl-3-thiophenecarboxylic Acid (6b).* A sample of 2 g (11 mmoles) of 2-methylthio-5methyl-3-thiophenealdoxime [1] and 0.88 g fused AcONa was refluxed for 3 h in 20 ml Ac₂O, poured into water with ice, and NaHCO₃ added. The oil separated was extracted with ether; the extract was washed with water, dried with MgSO₄, the ether was stripped off, and the residue recrystallized.

3-(2-Thienyl)-, (2-Methylthio-5-methyl-3-thienyl)-, and (2-Methylsulfonyl-5-methyl-3-thienyl)-N-phenyl-2isothiazoline-4,5-dicarboximides (5a-c). A weight (0.75 mmole) of thienyloxathiazolone 1a-c was added gradually to a solution of 3 mmoles N-phenylmaleinimide in 3-4 ml o-Cl₂C₆H₄, heated to 150°C (for 1b to 115-120°C), kept at this temperature until the complete disappearance of the oxathiazolone (checked by TLC), and cooled to 20°C. The precipitate of dicarboximide 5a formed was filtered off and recrystallized; solutions of 5b and c were chromatographed on a column and the products recrystallized. Separated 13-18% of nitriles 6b, c, N-phenylmaleinimide, and dicarboximides 5b and c.

Dimethyl Esters of 3-(2-Thienyl)-, 3-(2-Methylthio-5-methyl-3-thienyl)-, and 3-(2-Methylsulfonyl-5-methyl-3-thienyl)-2-isothiazoline-4,5-dicarboxylic Acids (4a-c). A weight (3 mmoles) of oxathiazolone 1a-c was added gradually to a solution of 12 mmoles dimethyl fumarate in 15-20 ml o-Cl₂C₆H₄ at 140°C (for 1b at 110°C) and kept at this temperature in a stream of argon for 14 h (for 1e for 10.5 h). The solution was cooled and chromatographed on a column; mixtures of adducts with dimethyl fumarate or nitrile were obtained, from which the pure esters 4a-c were isolated by recrystallization.

3-(2-Methylsulfonyl-5-methyl-3-thienyl)-5-chloromethyl- and 3-(2-Methylsulfonyl-5-methyl-3-thienyl)-5-trichloromethyl-1,2,4-thiadiazoles (8, 7). Prepared as described above from 3 mmoles oxathiazole 1c and a fourfold excess of ClCH₂CN and CCl₃CN, respectively, in o-Cl₂C₆H₄ at 140°C for 10 h (for 8 and 5 h for 7). ¹³C NMR spectrum of 7 [CDCl₃, δ , ppm (J13_{C-1H}, Hz)], 15.44 q (Me, J = 129.5); 44.94 q (SO₂Me, J = 136.7); 167.29 s (C³); 190.64 s (C⁵); 87.81 s (CCl₃); thienyl: 130.09 d (C⁴, J = 170.9); 134.94 s (C³); 139.6 s (C²); 146.75 d (C⁵, J = 7.3).

REFERENCES

- 1. M. M. Krayushkin, M. A. Kalik, V. K. Zav'yalova, and V. S. Bogdanov, Khim. Geterotsikl. Soedin., No. 3, 403 (1988).
- 2. M. M. Krayushkin, M. A. Kalik, V. K. Zav'yalova, and E. Yu. Zvezdina, in: Abstracts of 14th Internat. Conf. on the Chemistry of Organosulfur Compounds, Lodz' (1990), p. 25.
- 3. F. Kurzer in: Advances in Heterocyclic Chemistry, Vol. 32, A. R. Katritzky (ed.), Academic Press, New York-London (1982), p. 285.
- 4. E. Müllbauer and W. Weiss, British Patent No. 1,079,348 (1967); Chem. Abstr., 68, 69000 (1968).
- 5. E. S. Levitina, I. P. Yakovlev, E. D. Lubuzh, L. F. Godunova, E. I. Karpeiskaya, and E. I. Klabunovskii, *Khim. Geterotsikl. Soedin.*, No. 8, 1133 (1989).
- 6. R. M. Paton, Chem. Soc. Rev., 18, No. 1, 35 (1989).
- 7. R. K. Howe and J. E. Franz, J. Org. Chem., 43, No. 19, 3742 (1978).
- 8. R. K. Howe and J. E. Franz, J. Org. Chem., 39, No. 1, 962 (1974).
- 9. Ya. L. Gol'dfarb, M. A. Kalik, and M. L. Kirmalova, Zh. Obshch. Khim., 29, No. 11, 3631 (1959).
- 10. A. Senning and J. Sch. Rasmussen, Acta Chem. Scand., 27, No. 6, 2161 (1973).

^{*}Obtained for the first time by V. K. Zav'yalova in our laboratory.