Note

Stereoselective preparation of dioxolane-type *endo*-benzylidene acetals by kinetically controlled reactions *,[†]

J. Kerékgyártó and A. Lipták

Department of Biochemistry, L. Kossuth University, P.O. Box 55, Debrecen, H-4010 (Hungary) (Received November 9th, 1992; accepted April 14th, 1993)

Dioxolane-type benzylidene acetals of pyranoid carbohydrates are readily produced from cis(axial/equatorial)-diols in the form of two diastereoisomeric products. The preparative importance of such acetals was increased significantly by the observation that they can be stereoselectively cleaved into monohydroxy benzyl ethers¹.

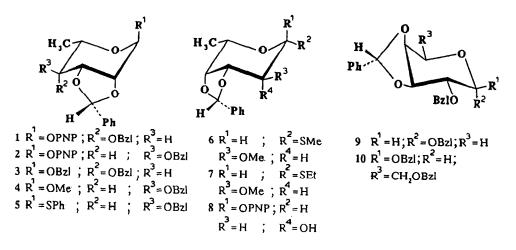
The conventional procedure for the preparation of dioxolane-type benzylidene acetals (benzaldehyde and zinc chloride) and the method described by Evans² (α, α -dimethoxytoluene, *p*-toluenesulfonic acid, DMF, 50–70°C, several hours) afford mixtures of the corresponding *exo* and *endo* isomers in almost equal quantities³⁻⁶. The synthesis of dioxolane-type benzylidene acetals by the treatment of diols with benzal halides in pyridine at reflux temperature⁷ also results in a ca. 1:1 mixture of the *exo* and *endo* acetals. Consequently, the diastereoisomeric products must be separated prior to application in the next synthetic step. In most cases, the *exo* isomer can be easily isolated from the mixture by crystallization in yields of 28–66%³⁻⁶. In this paper, we report a convenient procedure to synthesize *endo*-benzylidene acetal derivatives of various sugars with high stereoselectivity.

Compounds carrying 2,3- or 3,4-*cis* hydroxyl groups were treated with neat α, α -dimethoxytoluene in the presence of *p*-toluenesulfonic acid (5–10% of DMF was added when the solubility of the starting sugar in α, α -dimethoxytoluene was low). Under such conditions, the acetalation reaction proceeded with high stereoselectivity to afford the *endo*-benzylidene derivatives 1–10 (see Table I). The reaction times were between 5–10 min at room temperature, and the corresponding *exo* isomers could not be detected by TLC, indicating a kinetic control

^{*} Presented at the 33rd IUPAC CONGRESS, Budapest, August, 17-22, 1991, and at the VIth European Symposium on Carbohydrate Chemistry, Edinburgh, Scotland, September, 8-13, 1991.

[†] Dedicated to Professor Pál Nánási on the occasion of his 70th birthday.

TABLE I


Selected data for compounds 1-10

Compound ^a	¹ H NMR ^b	[α] _D ^c	Mp (°C)	R_f^{d}	Yield (%)	Ref
p-Nitrophenyl 4-O-benzyl-endo-2,3-O-	5.91	- 76°	syrup	0.46	78	
benzylidene-6-deoxy- α -L-talopyranoside (1)		(c 0.31)		(<i>A</i>)		
p-Nitrophenyl 4-O-benzyl-endo-2,3-O-	5.99	133°	syrup	0.60	81	
benzylidene- α -L-rhamnopyranoside (2)		(c 0.11)		(<i>A</i>)		
Benzyl 4-O-benzyl-endo-2,3-O-benzylidene-	5.79	-48°	76	0.48	83	8
6-deoxy-α-L-talopyranoside (3)		(c 1.0)		(B)		
Methyl 4-O-benzyl-endo-2,3-O-benzylidene-	5.91	- 33°	syrup	0.55	77	3
α -L-rhamnopyranoside (4)		(c 0.9)		(B)		
Phenyl 4-O-benzyl-endo-2,3-O-benzylidene-	5.87	+12°	101	0.42	76	
1-thio- α -L-rhamnopyranoside (5)		(c 0.25)		(<i>A</i>)		
Methyl endo-3,4-O-benzylidene-2-O-	5.93	+17°	syrup	0.74	76	9
methyl-1-thio- β -L-fucopyranoside (6)		(c 0.99)		(C)		
Ethyl endo-3,4-O-benzylidene-2-O-	5.92	+37°	78	0.48	82	
methyl-1-thio- β -L-fucopyranoside (7)		(c 0.42)		(A)		
p-Nitrophenyl endo-3,4-O-benzylidene-	5.78	106°	glass	0.39	78	9
6-deoxy- α -L-talopyranoside (8)		(c 0.68)		(D)		
Benzyl 2-O-benzyl-endo-3,4-O-benzylidene-	5.88	+150°	75	0.30	81	5
β -L-arabinopyranoside (9)		(c 0.75)		(<i>B</i>)		
Benzyl 2,6-di-O-benzyl-endo-3,4-O-benzylidene	- 5.86	+14°	64	0.47	84	6
β -D-galactopyranoside (10)		(c 0.57)		(<i>A</i>)		

^a New compounds gave satisfactory elemental analyses. ^b δ Values of benzal protons in CDCl₃ (Me₄Si internal standard). ^c In CHCl₃. ^d A, 7:3 hexane–EtOAc; B, 8:2 hexane–EtOAc; C, 9:1 CH₂Cl₂–EtOAc; D, 1:1 hexane–EtOAc.

operating under these reaction conditions. For dioxolane-type benzylidene acetals¹⁰, the kinetic phase of acetal formation gives the *endo*-phenyl derivative, which gradually equilibrates with the exo-phenyl analogue. It appears that the isomerization of the initially formed *endo* isomers is slow under these conditions, and the $t_{1/2}$ values for the isomerization of the benzylidene ring in compounds 1-10 must be greater than 15-30 min. In previous studies¹¹, the rate of isomerization of the isomeric dioxolane-type benzylidene acetals in CH₂Cl₂ solution catalyzed by AlCl₃ has been extensively investigated, and the results showed that substitution of the hydroxyl groups vicinal to the benzylidene ring increases the $t_{1/2}$ values by at least one order of magnitude. These results are in good agreement with our observations: namely, in the case of methyl α -L-rhamnopyranoside¹², the present procedure (in the presence of 10% DMF, 15 min) afforded a 1:1 mixture (GLC) of methyl endo/exo-2,3-O-benzylidene- α -L-rhamnopyranoside³, but benzylidenation of methyl 4-O-benzyl- α -L-rhamnopyranoside¹³ (10% DMF, 10 min) yielded compound 4 stereoselectively (endo/exo = 96:4, determined by GLC). The $t_{1/2}$ values (AlCl₃ reaction) for methyl endo-2,3-O-benzylidene-a-L-rhamnopyranoside and for methyl 4-O-benzyl-endo-2,3-O-benzylidene- α -L-rhamnopyranoside were 4 and 27 min, respectively¹¹.

The most welcome result was obtained when p-nitrophenyl 6-deoxy- α -L-

PNP = p-Nitrophenyl

talopyranoside⁹ was benzylidenated according to this new procedure, furnishing *p*-nitrophenyl *endo*-3,4-*O*-benzylidene-6-deoxy- α -L-talopyranoside⁹ (8), in a regioand stereo-selective manner, in 78% (isolated) yield. This compound was then successfully applied for the synthesis of the antigenic tetrasaccharide of *Mycobacterium avium* serovariant 20⁹.

In a typical procedure, *p*-toluenesulfonic acid (10 mg) was added to a solution of the sugar (1 mM) in α, α -dimethoxytoluene (2-4 mL). If the solubility of the sugar necessitated, as in the case of the preparation of 4 and 8, DMF (0.2-0.4 mL) was also added. The mixture was stirred at room temperature for 5-15 min (except for the preparation of 8, where the reaction time was between 50 min-3 h in different experiments). The mixture was diluted with CH₂Cl₂, and the organic layer was washed with aq NaHCO₃ and water, dried (Na₂SO₄), filtered, and concentrated. Column chromatography of the residue then yielded compounds 1-10 (for physical data, see Table I). The structure of the products was proved by ¹H NMR spectroscopy and by direct comparison with authentic samples.

ACKNOWLEDGMENTS

This work was supported, in part, by a grant (OTKA-F4066), and in part, by a grant (OTKA 50/88), from the National Science Foundation (Budapest, Hungary).

REFERENCES

3 A. Lipták, P. Nánási, A. Neszmélyi, and H. Wagner, Tetrahedron, 36 (1980) 1261-1268.

¹ A. Lipták, Tetrahedron Lett., (1976) 3551-3554.

² M.E. Evans, Carbohydr. Res., 21 (1972) 473-475.

- 4 A. Lipták, P. Fügedi, and P. Nánási, Carbohydr. Res., 65 (1978) 209-217.
- 5 A. Lipták, Z. Szurmai, J. Harangi, and P. Nánási, Acta Chim. Acad. Sci. Hung., 108 (1981) 333-342.
- 6 A. Lipták, L. Jánossy, J. Imre, and P. Nánási, Acta Chim. Acad. Sci. Hung., 101 (1979) 81-92.
- 7 G. Ekborg, J. Lönngren, and S. Svenson, Acta Chem. Scand., Ser. B, 29 (1975) 1031-1035.
- 8 A. Lipták, J. Kerékgyártó, V. Popsavin, M. Kajtár-Peredy, and L. Radics, J. Carbohydr. Chem., 7 (1988) 337-357.
- 9 J. Kerékgyártó, Z. Szurmai, and A. Lipták, Carbohydr. Res., 245 (1993) 65-80.
- 10 D.M. Clode, Chem. Rev., 79 (1979) 491-513.
- 11 J. Harangi, A. Lipták, V.A. Oláh, and P. Nánási, Carbohydr. Res., 98 (1981) 165-171.
- 12 D.M. Clode, D. Horton, and W. Weckerle, Carbohydr. Res., 49 (1976) 305-314.
- 13 A.H. Haines, Carbohydr. Res., 10 (1969) 466-467.