

Tetrahedron Letters 40 (1999) 4787-4790

TETRAHEDRON LETTERS

## Ruthenium Carbene Complexes with Imidazolin-2-ylidene Ligands Allow the Formation of Tetrasubstituted Cycloalkenes by RCM

Lutz Ackermann<sup>a</sup>, Alois Fürstner<sup>a</sup>\*, Thomas Weskamp<sup>b</sup>, Florian J. Kohl<sup>b</sup> and Wolfgang A. Herrmann<sup>b</sup>\*

<sup>a</sup> Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany <sup>b</sup> Anorganisch-chemisches Institut, Technische Universität München, D-85747 Garching, Germany

Received 24 March 1999; accepted 6 May 1999

Abstract: Chemically quite robust ruthenium carbene complexes 2-8 bearing one or two imidazolin-2ylidene ligands are highly active catalysts for all types of ring closing metathesis reactions (RCM). Importantly, they even allow the formation of tetrasubstituted alkenes that were previously out of reach of ruthenium-based metathesis catalysts. © 1999 Elsevier Science Ltd. All rights reserved.

Key Words: Alkenes, Carbenes, Imidazolin-2-ylidenes, Metathesis, Ruthenium

The discovery of Grubbs et al. that the ruthenium carbene complex 1 constitutes a highly efficient metathesis pre-catalyst tolerating most functional groups has triggered an avalanche of interest in this specific transformation.<sup>1,2</sup> As a consequence, many investigations have been reported which aim at gaining facile access to this exceedingly useful reagent,<sup>3</sup> at finding equipotent alternatives,<sup>4</sup> and at improving its application profile even further.<sup>5</sup> In this context it has been proposed to replace one or both of the PCy<sub>3</sub> ligands in 1 by imidazolin-2-ylidenes which are easily accessible and known to be more Lewis-basic than PCy<sub>3</sub>, and which may allow a fine tuning of the reactivity pattern by systematic variations of the R groups.<sup>6,7</sup> Preliminary data show that this is indeed possible.<sup>6</sup> Prompted by a recent publication of Grubbs et al. describing the favorable features of one member of this new series in ring closing metathesis (RCM) reactions,<sup>8</sup> we now disclose a more comprehensive and comparative investigation in this field.



Complexes 2-8 have been obtained according to the general procedure outlined previously.<sup>6</sup> All of them were found to catalyze the conversion of diene 9 into dihydropyrrole 10, although significant differences in

their behavior have been noticed (Table 1). Thus, compounds 4 and 5 bearing benzylic residues on the Nheterocyclic carbene ligands exhibit the lowest activity, whereas little difference was noticed between complexes 2 (R = Cy) and 3 (R = i-Pr); both of them result in essentially quantitative conversion after 24 h at 40°C. This result is in contrast to the behavior of the parent catalyst 1, in which replacement of PCy<sub>3</sub> by P(i-Pr)<sub>3</sub> results in a noticeable loss of catalytic performance.<sup>9</sup>

|       |                   | Ts<br>N |    | alyst (2 mol%)<br> | $\rightarrow$ $\bigwedge^{Ts}$ |    |    |  |  |  |
|-------|-------------------|---------|----|--------------------|--------------------------------|----|----|--|--|--|
|       |                   | 9       |    | 10                 |                                |    |    |  |  |  |
|       | 2                 | 3       | 4  | 5                  | 6                              | 7  | 8  |  |  |  |
| t (h) | Conversion (GC %) |         |    |                    |                                |    |    |  |  |  |
| 2.5   | 80                |         | 16 | 70                 | 77                             | 93 | 93 |  |  |  |
| 5     | 82                | 44      | 17 | 70                 | 79                             | 95 | 95 |  |  |  |
| 24    | 93                | 90      | 21 | 71                 | 89                             | 95 | 95 |  |  |  |

Table 1. Screening of Different Ruthenium Carbene Complexes Containing Imidazolin-2-ylidene Ligands.

A characteristic feature of the present class of metathesis catalysts relates to the fact that complexes 7 and 8 bearing only *one* N-heterocyclic carbene entity were found to be significantly more active than those which incorporate two of them. This observation is mechanistically reassuring, since the mixed ligand sphere allows them to populate the dissociative pathway<sup>10</sup> of RCM reactions more easily: because the dissociation of the phosphine from the ruthenium center is more facile than that of an imidazolin-2-ylidene, a higher concentration of an electronically and coordinatively unsaturated species thought to be responsible for productive RCM will form if 7 is used instead of 2 as the pre-catalyst. The same argument holds true for 8, in which the chloride bridged cymene(ruthenium) template is prone to decoordination and thereby opens the required vacant site on the active species in solution.<sup>11</sup>

Another noteworthy result is the comparison of 3 and its dibromo analogue 6, which were found to be essentially equipotent catalysts. This reactivity pattern is in sharp contrast to that of the parent system 1, in which the performance drops significantly if the chloride ligands are replaced by bromide or iodide.<sup>9</sup> A detailed mechanistic interpretation of this finding has to await further studies.

From the preparative viewpoint, complexes 2-8 constitute valuable tools for any kind of RCM reaction. As can be seen from the results compiled in Table 2, they effect the smooth cyclization of a representative panel of diene substrates to the corresponding cycloalkenes independent of the ring size formed; this includes macrocyclic products such as the commercially relevant perfume ingredient Exaltolid<sup>®</sup> (entries 14-16).<sup>12</sup> Their compatibility with functional groups seems to be essentially identical to that of complex 1. A rather unexpected yet very useful feature, however, is their *excellent performance in the formation of tri- and even of tetra-substituted cycloalkene products*. The latter cannot be formed with  $1^{13}$  and have therefore been a domain of the more active but also significantly more sensitive Schrock alkylidene catalyst  $Mo(=NAr)(=CHCMe_2Ph)[OCMe_2(CF_3)_2]$  (11).<sup>14</sup> In view of the good accessibility and excellent stability of 2-8 even against air and moisture, they constitute a valuable alternative to 11 and will almost certainly find many applications in advanced organic synthesis.

| Entry | Substrate        | Product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Catalyst (mol%) | t (h) | Yield (%) |
|-------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|-----------|
| 1     | l Ţs l           | Ts<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 (5%)          | 16    | 80        |
| 2     | ~N_              | Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>8</b> (5%)   | 16    | 63        |
|       |                  | E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |       |           |
| 3     | , <sup>E</sup> L | $\mathbf{X}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 (2%)          | 2.5   | 91 [a]    |
| 4     |                  | <u>\_</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8 (2%)          | 3     | 81 [a]    |
| 5     | L E E            | E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 (5%)          | 24    | 64 [a]    |
| 6     | L E E            | E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 (2%)          | 16    | 95        |
| 7     | ( Ę,Ĕ            | EE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 (5%)          | 14    | 96        |
| 8     |                  | , in the second | 8 (5%)          | 14    | 88        |
| 9     | Br               | Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 (2%)          | 3     | 93 [a]    |
| 10    | ĘĘ               | E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 (5%)          | 13    | 83        |
| 11    |                  | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>8</b> (5%)   | 13    | 65        |
| 12    | Ţs               | Ts-N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7 (2%)          | 15    | 69        |
| 13    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 (4%)          | 22    | 52        |
| 14    | $\mathcal{A}$    | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>2</b> (4%)   | 55    | 81 [a,b]  |
| 15    |                  | $\frown$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 (2%)          | 19    | 72 [b]    |
| 16    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>8</b> (4%)   | 55    | 88 [a,b]  |
|       | ~ ~<br>0         | ο                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |       |           |
| 17    | $\sim$           | $\sim 10^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>2</b> (4%)   | 20    | 73 [a,c]  |
| 18    |                  | $\langle \  \  \  \  \  \  \  \  \  \  \  \  \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 (4%)          | 38    | 76 [c]    |
| 19    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 (4%)          | 24    | 80 [a,c]  |

**Table 2.** RCM Reactions Catalyzed by Ruthenium-Carbene Complexes Containing Imidazolin-2-ylideneLigands (conditions:  $CH_2Cl_2$  at 40°C); E = COOMe.

[a] GC-Yield. [b]  $E:Z = 3.2 (\pm 0.1) : 1$ . [c]  $E:Z = 2.4 (\pm 0.1) : 1$ .

Acknowledgement. Generous financial support by the Fonds der Chemischen Industrie (stipends to L. A. and T. W.), the Deutsche Forschungsgemeinschaft (Leibniz program), and the Bayerischen Forschungsstiftung (FORKAT program) are acknowledged with gratitude.

## **REFERENCES AND NOTES**

- For recent reviews on RCM see: (a) Chang, S.; Grubbs, R. H. Tetrahedron 1998, 54, 4413. (b)
  Fürstner, A. Top. Organomet. Chem. 1998, 1, 37. (c) Schuster, M.; Blechert, S. Angew. Chem. Int. Ed. Engl. 1997, 36, 2036. (d) Fürstner, A. Top. Catal. 1997, 4, 285.
- [2] For some recent applications from our laboratory see: (a) Fürstner, A.; Langemann, K. J. Am. Chem. Soc. 1997, 119, 9130. (b) Fürstner, A.; Müller, T. J. Org. Chem. 1998, 63, 424. (c) Fürstner, A.; Koch, D.; Langemann, K.; Leitner, W. Angew. Chem. 1997, 109, 2562; Angew. Chem. Int. Ed. Engl. 1997, 36, 2466. (d) Fürstner, A.; Müller, T. Synlett 1997, 1010. (e) Fürstner, A.; Kindler, N. Tetrahedron Lett. 1996, 37, 7005. (f) Fürstner, A.; Gastner, T.; Weintritt, H. J. Org. Chem. 1999, 64, 2361.
- (a) Wolf, J.; Stüer, W.; Grünwald, C.; Werner, H.; Schwab, P.; Schulz, M. Angew. Chem. 1998, 110, 1165.
  (b) Belderrain, T. R.; Grubbs, R. H. Organometallics 1997, 16, 4001.
  (c) Wilhelm, T. E.; Belderrain, T. R.; Brown, S. N.; Grubbs, R. H. Organometallics 1997, 16, 3867.
- [4] (a) Fürstner, A.; Ackermann, L. Chem. Commun. 1999, 95. (b) Fürstner, A.; Picquet, M.; Bruneau, C.; Dixneuf, P. H. Chem. Commun. 1998, 1315. (c) Fürstner, A.; Hill, A. F.; Liebl, M.; Winton-Ely, J. T. E. D. Chem. Commun. 1999, 601.
- [5] For structural modifications of 1 see: (a) Chang, S.; Jones, L.; Wang, C.; Henling, L. M.; Grubbs, R. H. Organometallics 1998, 17, 3460. (b) Dias, E. L.; Grubbs, R. H. Organometallics 1998, 17, 2758. (c) Kingsbury, J. S.; Harrity, J. P. A.; Bonitatebus, P. J.; Hoveyda A. H. J. Am. Chem. Soc. 1999, 121, 791.
- [6] (a) Weskamp, T.; Schattenmann, W. C.; Spiegler, M.; Herrmann, W. A. Angew. Chem. 1998, 110, 2631; Angew. Chem. Int. Ed. Engl. 1998, 37, 2490. (b) Weskamp, T.; Kohl, F. J.; Hieringer, W.; Gleich, D.; Herrmann, W. A. Angew. Chem., in press.
- [7] Review on N-heterocyclic carbenes as ligands to metal catalysts: Herrmann, W. A.; Köcher, C. Angew. Chem. 1997, 109, 2256; Angew. Chem. Int. Ed. Engl. 1997, 36, 2162.
- [8] Scholl, M.; Trnka, T. M.; Morgan, J. P.; Grubbs, R. H. Tetrahedron Lett. 1999, 40, 2247.
- [9] For a systematic investigation of the influence of the ligand sphere on the catalytic activity of 1 and related complexes see: Schwab. P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100.
- [10] Dias, E. L.; Nguyen, S. T.; Grubbs, R. H. J. Am. Chem. Soc. 1997, 119, 3887.
- [11] For the corresponding dimetallic analogue of 1 see ref. 5b
- [12] (a) Fürstner, A.; Langemann, K. J. Org. Chem. 1996, 61, 3942. (b) Fürstner, A.; Langemann, K. Synthesis 1997, 792.
- [13] For a study of the influence of the substitution pattern of the alkene on RCM mediated by 1 see: Kirkland, T. A.; Grubbs, R. H. J. Org. Chem. 1997, 62, 7310.
- [14] (a) Schrock, R. R.; Murdzek, J. S.; Bazan, G. C.; Robbins, J.; DiMare, M.; O'Regan, M. J. Am. Chem. Soc. 1990, 112, 3875. (b) Review: Schrock, R. R. Top. Organomet. Chem. 1998, 1, 1.