
A SIMPLE PROCEDURE FOR α -ALKOXYALKYLATION OF α , β -ENONES via PYRIDINIOSILYLATION

Sunggak Kim*,Yong Gil Kim and Jung Ho Park Department of Chemistry Korea Advanced Institute of Science and Technology, Seoul 130-012, Korea

Summary : A one-pot, three-step procedure for α -alkoxyalkylation of α , β -enones utilizing a new pyridiniosilylation reaction is described.

In connection with our ongoing research for the functionalization of α , β -unsaturated carbonyl compounds,¹ we have had an occasion to study a pyridiniosilylation reaction and it has been found that TMSOTf promoted conjugate addition of pyridine to α , β -enals and α , β -enones occurred cleanly. As far as we are aware, this is the first example in which pyridine added to α , β -enals and α , β -enones, although conjugate addition of pyridines and quinolines to acrylic acid, acrylamide, and vinyl sulfone under forcing conditions was previously reported.²

The pyridiniosilylation of crotonaldehyde in $CDCl_3$ at -50 °C afforded 1silyloxyallylpyridinium salt(1)³ and allylic 1,3-rearrangement to 3-silyloxyallylpyridinium salt(2)⁴ has been observed, upon warming to room temperature. This rearrangement was complete within 1 h at room temperature. According to the low temperature ¹H-NMR spectroscopy, the pyridiniosilylation of 4-hexene-3-one in d₈-THF at -80 °C occurred to some extent (30%) via the 1,4-addition mode and the reaction was almost instantly complete at room temperature.⁵

 α -Alkoxyalkylation of α , β -enones⁶ can be conveniently carried out with pyridinium salts(3). The present method is based on (i) TMSOTf promoted addition of pyridine to enones (ii) the aldol-type reaction of silyl enol ethers with acetals in the presence of TMSOTf as a catalyst⁷ and (iii) facile β -elimination of pyridine.

α,β–enc	one acetal	product	yield, %
	PhCH(OMe) ₂ PhCH=CHCH(OMe) ₂ CH ₃ CH ₂ CH ₂ CH(OMe) ₂	$\begin{array}{c} O OMe \\ R = Ph \\ R = CH = CHPh \\ = CH_2CH_2C \end{array}$	91 84 H ₃ 60
	PhCH(OMe) ₂ PhCH=CHCH(OMe) ₂ CH ₃ CH ₂ CH ₂ CH(OMe) ₂	$ \begin{array}{c} O OMe R = Ph \\ = CH = CHPh \\ R = CH_2CH_2C \\ \end{array} $	75 74 H ₃ 61
	PhCH(OMe) ₂ PhCH=CHCH(OMe) ₂ PhCH ₂ CH(OMe) ₂	O OMe $R = Ph$ = CH=CHPh = CH_2Ph	86 90 59

Table 1. α -Alkoxyalkylation of α , β -Enones via Pyridiniosilylation

The pyridiniosilylation of α,β -enones was initially carried out with 1.1 equiv of pyridine and 1.3 equiv of TMSOTf in dichloromethane at -78 °C and allowed to warm to room temperature. It is noteworthy that the order of mixing the reagents is not important. Thus, an active species for the pyridiniosilylation of α,β -enones is regarded as N-trimethylsilylpyridinium triflate. A slightly excess amount of TMSOTf was added to utilize as a catalyst in the aldol-type reaction. The aldol-type reaction of pyridinium salts(3) with acetals at -78 °C ~ -20 °C for 2 h followed by elimination of pyridine in pyridinium salts(4) with DBU afforded α -alkoxyalkylated enones(5) in high yields. As shown in Table 1, the present method works well with both acyclic and cyclic enones. It is noteworthy that the aldol-type reaction with pyridinium salts(2) derived from α,β -enals did not take place under the present conditions.⁸

References and notes

- Kim, S.; Lee, P. H. Tetrahedron Lett. 1988, 29, 5413. Kim, S.; Kim, Y. C. Synlett, 1990,115. Tetrahedron lett. 1990, 31, 2901.
- 2. Johns, G. in "*The Chemistry of Heterocyclic Compound* ", Eds. Weissberger, A.; Taylor, E. C.; J. Wiely and Sons Inc. **1977** and references cited therein. Futhermore, the possibility of conjugate addition of pyridine to α,β -enones was suggested in the prepartion of 2-phenylselenylenones. Zima, G.; Liotta, D. *Synthetic Comm.* **1979**, *9*, 697.
- 3. ¹H-NMR(300MHz, CDCl₃, -50 °C) δ 0.27 (s, 9H), 1.82 (d, J=6.6Hz, 3H), 5.60 (d,d, J=7.1Hz, 15.2Hz, 1H), 6.53 (m, 1H), 6.79 (d, J=7.1Hz, 1H), 8.00-9.00 (m, 5H).
- 4. ¹H-NMR(300MHz, CDCl₃) δ 0.27 (m, 9H), 1.86 (d,d, J=2.9Hz, 6.8Hz, 3H), 5.09(cis) (d,d, J=5.5Hz, 7.3Hz, 0.2H), 5.36(trans) (d,d, J=9.0Hz, 11.7Hz, 0.8H), 5.64(cis) (m, 0.2H), 5.66(trans) (m, 0.8H), 6.96(cis) (d, J=1.3Hz, 0.2H), 7.01(trans) (d, J=11.7Hz, 0.8H), 8.00-9.00 (m, 5H).
- 5. ¹H-NMR(300MHz, d₈-THF) δ 0.18 (s, 9H), 1.04 (t, J=7.2Hz, 3H), 1.75 (d, J=6.8Hz, 3H), 2.18 (q, J=7.2Hz, 2H), 5.19 (d, J=7.7Hz, 1H), 5.77 (m, 1H), 8.10-9.00 (m, 5H).
- 6. Suzuki, M.; Kawagishi, T.; Noyori, R. Tetrahedron Lett. 1981, 22, 1809.
- 7. Murata, S.; Suzuki, M.; Noyori, R. J. Am. Chem. Soc. 1980, 102, 3248.
- 8. We thank KOSEF and OCRC for financial support.

(Received in Japan 4 January 1991)