Brief Communications

New catalytic system $Cu(OAc)_2-2,4$ -lutidine $-ZnCl_2$ for olefin cyclopropanation with methyl diazoacetate

V. F. Gareev,^a R. M. Sultanova,^a R. Z. Biglova,^a V. A. Dokichev,^{a*} and Yu. V. Tomilov^b

^aInstitute of Organic Chemistry, Ufa Scientific Center of the Russian Academy of Sciences, 71 prosp. Oktyabrya, 450054 Ufa, Russian Federation. Fax: +7 (347) 235 6066. E-mail: dokichev@anrb.ru

^bN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation. Fax: +7 (499) 135 6390. E-mail: tom@ioc.ac.ru

A new efficient catalytic system consisting of $Cu(OAc)_2$, 2,4-lutidine, and $ZnCl_2$ was found for the cyclopropanation of unsaturated compounds with methyl diazoacetate. In the case of conjugated dienes, the process occurs regioselectively at the most alkylated C=C bond.

Key words: olefins, diazo esters, dienes, cyclopropane carboxylates, catalytic systems, cyclopropanation.

Olefin cyclopropanation with alkyl diazoacetates is widely used in organic synthesis as a convenient method for the preparation of cyclopropanecarboxylic acid derivatives,¹⁻⁶ many of which are practically important compounds (cilastatin, pyrethroids, dictyopterenes, *etc.*). It is noteworthy that the majority of the known catalysts for cyclopropanation³⁻⁸ based on Cu, Co, Ru, Pd, and Rh provide no high regioselectivity in the case of dienes and, as a rule, require the application of a 5–10-fold excess of an unsaturated compound for the suppression of alkoxy-carbonylcarbene dimerization. The repeated use of these catalysts is usually impossible and, hence, search for new highly efficient catalysts for the cyclopropanation of unsaturated compounds remains to be an urgent problem.

In the present work, we showed for the first time that the $Cu(OAc)_2$ -2,4-lutidine-ZnCl₂ three-component system with a molar ratio of 6 : 5 : 1 is an efficient catalyst for the cyclopropanation of olefins and conjugated dienes (**1a-h**, Scheme 1, Table 1) with methyl diazoacetate (MDA). The reaction is carried out at 40 °C by the addition of a solution of MDA in CH_2Cl_2 to the unsaturated compound and the catalyst, with the molar ratio MDA: olefin : catalyst (based on $Cu(OAc)_2$) being 1 : 1 : 0.06. The study of the effect of the nature of pyridinium compounds (Py, 2,4-lutidine, 2,6-lutidine, 2-picoline, 2-cyanopyridine, 2,6-diaminopyridine, 3- and 4-aminopyri-dines, 3,5-dibromo-2-aminopyridine), Lewis acids (AlCl₃, KBF₄, ZnCl₂), and various copper, palladium,

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1750–1752, August, 2008. 1066-5285/08/5708-1784 © 2008 Springer Science+Business Media, Inc.

1785

Scheme 1

 Table 1. Yields of the products and the ratio of the *trans*- and *cis*-isomers of compound 2

Com-	R ¹	R ²	R ³	R ⁴	Yield (%)		Ratio
pounds 2a—h					2	3	of isomers trans/cis
a	Н	Н	Н	Bu	28	25	1.9
b	Н	Н	Н	Ph	72	26	2.0
c	Н	Н	Н	CH=CH ₂	49	9	1.3
d	Н	Н	Me	$CH = CH_2$	52	9	1.3
e	Н	Me	Н	$CH=CH_2$	50	8	1.3
f	Me	Н	Н	$CH = CH_2$	50	_	1.3
g	Me	Me	Н	CH=CMe ₂	65	20	1.9
g*	Me	Me	Н	$CH=CMe_2$	81	9	1.9
g**	Me	Me	Н	$CH=CMe_2$	72	11	2.0
h	Me	Me	Н	CH=CCl ₂	48	—	1.5

*Sixth cycle of the catalyst use. **Seventh cycle.

and rhodium compounds $(Cu(OAc)_2, [CuOTf] \cdot C_6H_6,$ $Cu(OTf)_2$, $Pd(OAc)_2$, $Rh_2(CF_3CO_2)_4$, $Rh_2(OAc)_4$) on the reaction products showed that a combination of the components Cu(OAc)₂-2,4-lutidine-ZnCl₂ provided the best results. In the absence of at least one of the components of this system, MDA does not interact with unsaturated compounds **1a-h**. When this system is used, the cyclopropanation of 1,3-dienes 1c-h with MDA occurs regioselectively at the most alkylated C=C bond to form mixtures of diastereomeric methyl vinylcyclopropanecarboxylates **2c-h** with prevailing of *trans*-isomers in 49–81% yields (see Scheme 1). It should be mentioned that for diene 1g no double cyclopropanation products were observed even when using a twofold molar excess of MDA. The double bond of chrysanthemate 2g is not subjected to cyclopropanation under these conditions.

It was found for the cyclopropanation of 2,5-dimethylhexa-2,4-diene (**1g**) as an example that the $Cu(OAc)_2$ — 2,4-lutidine—ZnCl₂ catalytic system did not lose its activity even being used eight times. Moreover, it turned out that recycling of the catalyst increased the yield of methyl chrysanthemate (**2g**) up to 81%. The obtained catalytic system is an oily dark brown substance soluble in methylene chloride and insoluble in petroleum ether, which allows easy isolation of the catalyst from the reaction mixture for repeated use.

Thus, we proposed a new rather simple and efficient catalyst for the synthesis of cyclopropanecarboxylates from methyl diazoacetate and unsaturated compounds.

Experimental

The structures of compounds **2a**—**h** were confirmed by the ¹H and ¹³C NMR spectral data. ¹H and ¹³C NMR spectra were recorded on a Bruker AM-300 spectrometer (300.13 and 75.47 mHz, respectively) in CDCl₃ using Me₄Si as an internal standard. GLC analysis was carried out on a Chrom-5 chromatograph with a flame-ionization detector (column 1200×3 mm with 5% SE-30 on Chromatone N-AW-HMDS) using helium as a carrier gas. 2,5-Dimethylhexa-2,4-diene (**1g**), 2,4-lutidine, [CuOTf]₂ • C₆H₆, and Cu(OTf)₂ (Aldrich) and Cu(OAc)₂ (ZAO Vekton, Russia) were used. Unsaturated compounds **1a**—**h** were distilled under an argon flow and stored over hydroquinone. The solvents used (CH₂Cl₂ and petroleum ether) were purified using standard procedures.⁹

Catalytic cyclopropanation of olefins 1a-h with methyl diazoacetate (general procedure). Unsaturated compound 1a-h (18 mmol) was added to a stirred solution containing anhydrous ZnCl₂ (4.1 mg, 0.03 mmol), 2,4-lutidine (16.0 mg, 0.15 mmol), and $Cu(OAc)_2$ (32.7 mg, 0.18 mmol) in CH₂Cl₂ (5 mL). Then at 40 °C (in the case of diene 1c, the reaction was carried out at room temperature) methyl diazoacetate (1.80 g, 18 mmol) in CH₂Cl₂ (7 mL) was slowly added until gas evolution has ceased. The solvent was removed in vacuo, petroleum ether (b.p. 40-70 °C) was added to the residue, and the catalytic system was separated as a dark brown oil (the catalytic system obtained for the cyclopropanation of diene 1g was used seven times more in experiments on cyclopropanation). The petroleum ether solution was concentrated in vacuo, and the residue was analyzed by GLC and ¹H NMR spectroscopy. The yields of compounds 2a-h were determined by GLC using tetradecane as an internal standard calibrated by an authentic sample of methyl chrysanthemate 2g. The isomers were characterized in a mixture by NMR spectroscopy, and their ratio was determined on the basis of the integral intensity of signals of the methinic protons at the C(1) atom for compounds 2a-c,g,h and the vinylic protons for compounds **2d**—**f** in the ¹H NMR spectra. The physicochemical and spectral characteristics of compounds 2a-h corresponded to the published data.4,10,11

This work was financially supported by the Presidium of the Russian Academy of Sciences (Program for Fundamental Research "Development of Methods for the Synthesis of Chemical Substances and Design of New Materials," Subprogram "Development of Methodology of Organic Synthesis and Design of Compounds with Valuable Applied Properties").

References

- 1. H. Lebel, J.-F. Marcoux, C. Molinaro, A. B. Charette, *Chem. Rev.*, 2003, **103**, 977.
- 2. W. A. Donaldson, Tetrahedron, 2001, 57, 8589.
- G. Maas, Transition-Metal Catalyzed Decomposition of Aliphatic Diazo Compounds — New Results and Applications in Organic Synthesis, Springer-Verlag, Berlin, Heidelberg, 1987, p. 85.
- 4. E. A. Shapiro, A. B. Dyatkin, O. M. Nefedov, *Diazoefiry* [*Diazoesters*], Nauka, Moscow, 1992, p. 78 (in Russian).
- 5. M. P. Doyle, M. A. McKervey, T. Ye, *Modern Catalytic Methods for Organic Synthesis with Diazo Compounds*, John Wiley and Sons, New York, 1998, p. 163.

- 6. T. Werle, G. Maas, Adv. Synth. Catal., 2001, 343, 37.
- 7. M. Itagaki, K. Masumoto, Y. Yamamoto, J. Org. Chem., 2005, 70, 3292.
- 8. M. P. Doyle, J. Org. Chem., 2006, 71, 9253.
- 9. F. J. Gordon and R. A. Ford, *The Chemist's Companion*, Wiley, New York–London–Sidney–Toronto, 1972.
- A. J. Anciaux, A. F. Noels, A. J. Hubert, N. Petiniot, P. Teyssie, *J. Org. Chem.*, 1980, 45, 695.
- A. Demonceau, A. F. Noels, A. J. Anciaux, A. J. Hubert, P. Teyssie, Bull. Soc. Chim. Belg., 1984, 93, 949.

Received April 23, 2008; in revised form May 30, 2008