Journal of Photochemistry and Photobiology A: Chemistry xxx (2017) xxx-xxx

Contents lists available at ScienceDirect

Journal of Photochemistry and Photobiology A: Chemistry

journal homepage: www.elsevier.com/locate/jphotochem

Invited feature article

Effect of solvents on photocatalytic reduction of CO_2 mediated by cobalt complex

Jinliang Lin^{a,b,*}, Biao Qin^{a,b}, Guanglian Zhao^{a,b}

^a Department of Chemical and Engineering, Zunyi Normal College, 563000, Zunyi, China
^b Characteristics Key Laboratory of Qianbei, Zunyi Normal College, 563000, Zunyi, China

ARTICLE INFO

Article history: Received 17 April 2017 Received in revised form 2 September 2017 Accepted 9 September 2017 Available online xxx

PACS: 82.30.Vy 82.33.-z

Keywords: Photocatalysis CO₂ reduction Solvent effect Photochemistry Electron transfer

1. Introduction

Photocatalytic reduction of CO₂ by solar resource, a significant half reaction of artificial photosynthesis, has been considered as one promising solution to produce renewable energy and alleviate global warmming [1,2]. Since the pioneer work of photocatalytic reduction of CO₂ in aqueous solution over semiconductor photocatalysts by Inoue et al. a variety of photochemical CO₂ conversion systems have been established and investigated [3]. Among the developed CO₂ reduction systems, gaseous systems for photocatalytic reduction of CO₂ with vaporized H₂O over solid catalysts have been actively studied, which exhibit inspiring achievements [4]. Materials such as TiO₂, SrTiO₃, CdS, zeolites, g-C₃N₄ polymers, metal-organicn frameworks (MOF), and covalent organic frameworks (COF) are demonstrated as efficient catalysts for CO₂ photoreduction in liquid reaction mediums [1,5,6]. In the CO₂ reduction systems involving metal based catalysts, the adsorption strength of CO₂⁻ to the metal species on catalyst surface greatly determines the activity and selectivity of the reaction [5,7]. Of note, the thermodynamically stable linear CO₂ molecules can also be

ABSTRACT

Conversion of CO₂ into value-added chemicals by solar energy is one of the most promising pathways to partially address both energy crisis and global warming effect. The properties of reaction medium play a key role in determining the efficiency of CO₂ photoreduction and modulating the distribution of reaction products. Herein, we report the detailed investigation of solvent effects on the performance of photocatalytic CO₂ reduction by means of photo-/electro-chemical and spectroscopy techniques. The relationship between photochemical CO₂ performance and solvent properties (e.g., viscosity, solubility, and electrochemical behaviors) are systematically explored. The active intermediates for CO₂ photoreduction catalysis are examined by UV-vis absorption spectra. Moreover, a possible reaction pathway involving photoexcited charge transfers and intermediate species transformations in various solvents is proposed.

© 2017 Published by Elsevier B.V.

activated by transition-metal catalysts under light irradiation, which coupled to appropriate reductants would efficiently promote the conversion of CO₂. As a demonstration, Lehn's group developed a photochemical CO₂ reduction system containing a catalyst combination of $[Ru(bpy)]_3Cl_2$ (bpy = 2,2'-bipyridine) and CoCl₂ to act as a photosensitizer and an electron mediator, respectively, along with TEOA as the electron donor [8].

Cobalt complexes have been widely employed as an efficient homogeneous cocatalysts to mediate CO₂ photoreduction through generating a Co(I) species transition state. The formation of Co-CO₂⁻ adduct with bent geometry can substantially minimize the activation energy of CO₂ molecules for subsequent conversion reactions. Xu et al. have developed an efficient hybrid CO₂ photoreduction system by mixing CdS nanoparticles and CoCl₂/ bpy in an acetonitrile solution, which affords a high apparent quantum yield of 1.0% for CO formation under monochromatic irradiation ($\lambda = 470$ nm) [9]. Our previous work revealed that similar reaction mechanism can further be extended to both heterogeneous and homogenous photocatalytic CO₂ reduction systems in acetonitrile solution [10]. Besides, a high-effciency photocatalytic CO₂ reduction system consisting of semiconductor powders and a Ru-based complex is also achieved by Bhatt and coworkers [11]. So far, the reported heterogeneous and homogeneous photocatalytic CO₂ reduction systems are mainly operated in liquid phase (e.g., suspension or solution). Results of these works

Please cite this article in press as: J. Lin, et al., Effect of solvents on photocatalytic reduction of CO₂ mediated by cobalt complex, J. Photochem. Photobiol. A: Chem. (2017), http://dx.doi.org/10.1016/j.jphotochem.2017.09.019

^{*} Corresponding author at: Department of Chemical and Engineering, Zunyi Normal College, Address: Ping'an Street (No.6), Honghuagang District, Zunyi City, Guizhou Province, China.

E-mail address: jinliang_lin@163.com (J. Lin).

http://dx.doi.org/10.1016/j.jphotochem.2017.09.019 1010-6030/© 2017 Published by Elsevier B.V.

J. Lin et al./Journal of Photochemistry and Photobiology A: Chemistry xxx (2017) xxx-xxx

point out that the interaction between CO_2 molecules and metal species on catalysts surface is significantly influenced by reaction medium, especially the reaction solvents.

The influence of solvent on chemical equilibrium has long been investigated, and can be mainly measurened by dielectric constants [12]. It is well known that the first step in CO₂ conversion involves the formation of a " CO_2^{-} " intermediate, which requires a high reaction potential (e.g., -2.2 V vs. SCE, in DMF solution) [13–15]. Previous studies demonstrate that the properties of used solvent can obviously decrease the energy barrier during CO₂ activation. For instance, using 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM]BF₄) as solvent, the generation of CO₂⁻ anion only necessitates a much lower overpotential of 0.17 V due to the complex effect of EMIM [15]. Besides, it is also reported that the selectivity of CO₂ reduction is mainly depended on the adsorption of CO_2^- on catalyst surface, which is also largely affected the nature of reaction solvent. In low polar solvents, the formed CO₂⁻ may be adsorbed strongly to the active surface sites of photocatalyst by carbon atom of the anion. In this case, carbon monoxide and formate are usually the main products. Alternatively, the CO₂⁻ anion is prone to be stabilized by the solvent molecules with high dielectric constant, resulting in weakened interaction with photocatalyst, and thus generating formate as the product [16]. Additionally, the solvent-dependent, charge-transfer equilibrium between active radicals is explored as well in organic synthesis [12]. On the other hand, the CO₂⁻ anion would form a M- CO_2^{-} (M = metal) intermediate as the first reaction step in metalcontaining CO₂ reduction systems, and the properties of reaction solvent are considered to be of crucial importance to the generation and stabilization of M-CO₂⁻ adducts [17].

Based on the above considerations, we are interested in conducting an intensive study on the influences of solvent molecules to CO_2 activation and conversion through the formation of $M-CO_2^-$ adduct, which is of particular importance but rarely reported. Herein, we demonstrate the detailed investigation of solvent effects on the performance of photocatalytic CO_2 reduction by means of photo-/electro-chemical and spectroscopy techniques. The relationship between photochemical CO_2 performance and solvent properties (e.g., viscosity, solubility, and electrochemical behaviors) are systematically investigated. The active intermediates for CO_2 photoreduction catalysis are examined by UV-vis absorption spectra. Moreover, a possible reaction pathway involving photoexcited charge transfers and intermediate species transformations in various solvents is proposed.

2. Experimental section

2.1. Chemicals

All the chemicals were purchased from China Sinopharm Chemical reagent Co. Ltd and without further purification. Cadmium sulfide (CdS) is of high purity (99.999%), and other chemicals including N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), tetrahydrofufan (THF), acetonitrile (AN), trie-thanolamine(TEOA), cobalt chloride hexahydrate (CoCl₂·6H₂O) and 2,2-bipyridine (bpy) are of reagent grade. The used water used is ultrapure with resistivity of *ca.*18 M Ω cm.

2.2. Characterization

X-ray diffraction (XRD) patterns were collected using a Bruker D8 Advance X-ray diffractometer (Cu K_{$\alpha 1$} irradiation, $\lambda = 1.5406$ Å). Absorption spectra were obtained on an UV–vis spectrophotometer (Varian Cary 50 Conc). The metal-solvent and metal-ligand-solvent were directly mixed before measurement. Detection of Co^I

transition was conducted in a sealed container adaptable for record equipment, and exposed light irradiation for 10 min before test.

2.3. Electrochemical measurements

Electrochemical measurements were conducted with a CHI 660E workstation in a conventional three electrode cell, using a Pt plate as the counter electrode and saturated calomel electrode (SCE) as the reference electrode. The photoelectrode was immersed in a 0.1 M KCl aqueous solution. The photoelectrodes were prepared by a typical coating method: the aqueous slurries of CdS were quantificationally coated on ITO glass substrates [18]. The films on ITO glass substrate were dried in air and annealed at 100 °C for 1 h as the final photoelectrodes. The electrolyte solution (ca. 60 m1), saturated with N₂ or CO₂ respectively and stirred by a magnetic stirrer, contained the same ingredients as photocatalytic reduction system in each solvent. The cell was then sealed and, at the same time, the three electrodes were immersed into the electrolyte because they were fixed on the cover of the cell. The electrolysis cell was placed into a constant temperature water bath of 20 °C. Time dependent photocurrent curves were measured at -1.2 V with amperometric i-t curve method; and the electrocatalytic behavior were test from 0 to -1.8V with cyclic voltammetry model.

2.4. Photocatalysis test

All experiments were performed in a Schlenk flask (80 ml) under an atmosphere pressure of CO₂ (1 atm) [19]. In the Schlenk flask, CdS (50 mg), bpy(15 mg), CoCl₂·6H₂O (10 μ mol) were added in the mixture of solvent (5 ml) and triethanolamine (TEOA, 1 ml). TEOA was used as the sacrificial agent. The system was subjected to vacuum degassing and backfilling with pure CO₂ gas. This process was repeated three times and after the last cycle the flask was back filled with CO₂. Then the system was irradiated with two counter non-focus 50 W white LED light source under vigorous stirring at 20 °C controlled by a water-cooling system. The produced gases (CO, H₂) were detected by a gas chromatography (Agilent 7890, Agilent Technologies) equipped with a packed column (TDX–1 mesh 42/10). Ar was used as the carrier gas.

3. Results and disscussion

Results of photocatalytic CO₂ reduction performance in different reaction solvents are listed in Table 1. With acetonitrile (AN) as the reaction solvent under visible light irradiation for 2 h (Entry 1, Table 1), the CO₂ reduction system exhibits a high photocatalytic activity, generating 42.6 μ mol of CO production and 7.4 μ mol of H₂ evolution. When DMF is used as the reaction solvent, the formation of CO is diminished to 29.4 μ mol (Entry 2, Table 1), but with comparable CO selectivity relative to that in AN. The generation and selectivity of CO in DMSO solvent is much

Table 1

Photocatalytic CO_2 reduction performance with various solvents as the reaction medium. $^\mathrm{a}$

Entry	Solvent	Viscosity (cp)	Solubility (mol/L)	CO [µmol]	H ₂ [µmol]	Sel. ^b [%]
1	AN	0.37	0.28	42.6	7.4	85.2
2	DMF	0.92	0.20	29.4	4.8	86.0
3	DMSO	2.24	0.14	8.9	8.0	52.7
4	THF	0.55	0.21	24.7	2.6	90.5
5	H_2O	1	0.03	0.23	1.9	10.8

 a All the reactions were perfomed under 1 atm and at 20 °C. b Sel. = mol CO/mol $(H_2$ +CO) \times 100.

inferior among the examined aprotic solvents (Entry 3, Table 1), mainly because of the low CO₂ solubility and the high viscosity hindering the reaction kinetics. Although the CO₂ solubility in THF is similar to that in DMF, the archived CO evolution is only moderate (Entry 4, Table 1), but the selectivity of CO (90.5%) is the highest. This high CO selectivity should be intimately related with the high coordination ability of THF to Co-bpy complex [20]. Once using H₂O as a classic protic solvent, only a tiny amount of CO and H₂ is produced (Entry 5, Table 1), indicating that aprotic solvents are more favorable for CO₂ reduction in the developed reaction system. Besides, it is worth mentioning that trace amount of formic acid was detected when AN or H₂O was employed as the reaction solvent. The distribution of reaction products is consistent with the results of reported works [21-24]. All these results suggest that the CO₂ solubility and the metal-coordinating capabilities of reaction solvents impressively affect the performance of photocatalytic CO₂ reduction. From Table 1, it is concluded that the order of CO production is in good accordance with CO₂ solubility in solvents, and no obvious correlation with solvent viscosity is observed.

The above conclusions are also supported by the time courses of products in different solvents. As shown in Fig. 1, the reaction rate of CO₂ reduction catalysis is largely determined by the properties of used solvents. When the reaction is performed with AN as the solvent, the catalytic system manifests the highest production of CO and H₂. After reaction for about 2 h, the generation of CO is almost unchanged, due mainly to the consumption of electron donor TEOA in the system. Using H₂O as the reaction solvent, the production of CO is negligible, but the evolution rate of H₂ is nearly maintains at constant. This observation is reasonable as the presence of plentiful protons facilitates H₂ generation. These findings further demonstrate that the solubility of CO₂ in the solvent greatly influences the performance of CO₂ photoreduction.

The electrochemical behaviors of CO₂ reduction are then inspected by cyclic voltammetry (CV). In these tests, the processes of CO₂ reduction can be monitored indirectly, which involves the initial reduction of Co^{II} complexes and their subsequent reaction with CO₂ to form Co-CO₂ intermediates. The thus formed Co^I complexes are important redox active catalysts [8,9]. In the tests, the reduction potential of CO₂ is approaching to the thermodynamic value. The obtained CV curves are shown in Fig. 2. In the absence of CO₂, the obtained redox potential (E⁰⁰ = -0.7 V) in AN, DMF, and DMSO (Fig. 2a-c) is attributed to the conversion of Co^{II} complex to Co^I counterpart [25]. In this stage, the low valent Co intermediates are stabilized by pyridine ligand through weak coordination [26], promoting the activation of CO₂ molecules *via* nucleophilic attack. The activity of CO₂ conversion reaction is determined not only by the energy barrier of forming the

corresponding intermediates, but also by the solubility of CO₂ in the reaction solvent. No obvious signal is observed in THF solution (Fig. 2d), possibly because of the generation of a light blue precipitate as shown in Fig. S2. In H₂O (Fig. 2e), one couple of redox peaks are detected ($E^{00} = -0.4 V$, and $E^{00} = -1.2 V$), which is different from that observed in organic solvents (Fig. 2a-c). This finding may be caused by the protonation of Co^I to produce Co^I-H complex, subsequently decreasing the reduction potential [27]. When CO_2 is introduced (Fig. 2a-c), the corresponding peaks observed in N₂ shift toward anodic position with the potential of about 500 mV, and the intensities of peak are enhanced considerably. The markedly increased current densities indicate that the reaction systems experience electrocatalytic CO₂ reduction reactions with high efficiency. With CO₂ being introduced into THF, the shape of the CV is almost unchanged compared with that in N₂ saturated solution, consistent with the results in UV-vis measurements. This phenomenon is mainly resulted from the coordination of cobalt species with oxygen atom of the solvent molecule, and thus hindering the formation of M-CO₂⁻ and the charge transfers afterwards. Besides, when the CO₂ reduction reaction is conducted in H₂O, an obvious reduction peak ($E^{00} = -0.4$ V) is detected as well. This result further suggests the proton-coupled CO₂ reduction mechanism.

During the processes of photocatalytic reactions, electron-hole paires and some labile intermediates are formed upon light irradiation [28]. The typical role of electron migration in organic electrolytes could be reflected by transient photocurrent response under light illumination. The photocurrent responses of the CO_2 reduction systems with different solvents as the electrolytes are displayed in Fig. S3. The photocurrent intensity indicates the transfer kinetics of charge carriers. The trend of photocurrent density is in good agreement with the order of CO_2 photoreduction activity in organic solvents as shown in Fig. 1. The observed photocurrent generation in H₂O in mainly attributed to H₂ evolution reaction. These results reveal that the transportation of photo-induced charges of CO_2 conversion photocatalysis can be accelerated by selecting appropriate solvent as the reaction medium.

Absorption spectroscopy is employed to characterize the interaction of solute-solvent in CO_2 reduction system. The UV-vis absorption spectra of solute molecules are influenced by solvent molecules around and other environments. In order to minimize the interferences caused by the surrounding factors, the UV-vis absorption spectra are collected in solution by directly dissolving Co^{2+} ($CoCl_2$) in various solvents. As shown in Fig. 3, the UV-vis absorption spectra obtained in all the organic solution generally exhibit two absorption bands (line a–d). The absorption

Fig. 1. Production of CO and H₂ in different solvents: (a) AN, (b) DMF, (c) THF, (d) DMSO, and (e) H₂O.

Please cite this article in press as: J. Lin, et al., Effect of solvents on photocatalytic reduction of CO₂ mediated by cobalt complex, J. Photochem. Photobiol. A: Chem. (2017), http://dx.doi.org/10.1016/j.jphotochem.2017.09.019

4

ARTICLE IN PRESS

J. Lin et al./Journal of Photochemistry and Photobiology A: Chemistry xxx (2017) xxx-xxx

Fig. 2. Cyclic voltammograms of CdS/ITO electrodes in various electrolyte: (a) AN, (b) DMF, (c) DMSO, (d) THF, and (e) H₂O.

bands located at around 300 nm are attributed to the metal-toligand charge transition (MLCT) band. The absorption bands positioned at 550–750 nm is due to the d–d transition in CoL_4

Fig. 3. UV-vis absorption spectra of Co^{2*} -solvent interaction recorded in different solvents: (a) AN, (b) DMF, (c) DMSO, (d) THF, and (e) H₂O.

tetrahedral complexes [29]. These results indicate the strong interaction between the ligand and metal cation in the CO₂ systems when organic solvents are used as the reaction medium. However, only a weak absorption peak (*ca.* 480 nm) is observed when the Co² ⁺ is dissolved in H₂O [30]. These changes are mainly induced by the alternation of the chemical nature of solvent molecules, such as the charge transfers between solvent and solute, solvent dependent aggregation and complexation.

Fig. 4 displays the UV-vis absorption spectra of the reaction mixture with the presence of bpy. As can be seen, after the introduction of bpy, the absorption position around 300 nm experiences an obvious red-shift, highlighting the enhanced MLCT process. While the absorption intensity at 550–750 nm is weakened, which indicats that the cobalt center is favored to coordinate with bpy, rather than the solvent molecules. It should be noted that the tertiary amine TEOA may also contribute to the solvent effect in photocatalytic CO₂ reduction systems by serving as a ligand to coordinate with cobalt center. Reults of UV-vis absorption characterizations demonstrate that the ligand (e.g., bpy) in CO₂ reduction system can alter the charge distribution of

Fig. 4. UV-vis absorption spectra of $Co(bpy)_nCl_2$ in different solution: (a) AN, (b) DMF, (c) DMSO, (d) H_2O, and (e) THF.

Please cite this article in press as: J. Lin, et al., Effect of solvents on photocatalytic reduction of CO₂ mediated by cobalt complex, J. Photochem. Photobiol. A: Chem. (2017), http://dx.doi.org/10.1016/j.jphotochem.2017.09.019

Fig. 5. UV-vis absorption spectra of the $Co(bpy)_n^*$ intermediates formed in the CO_2 reduction system with acetonitrile as the reaction solvent (a) before and (b) after light irradiation. Inserts are the corresponding photographs [9].

metal center, and eventually affect CO_2 adsorption and the catalytic performance of CO_2 reduction system.

To investigate the experiences of Co^{II} during CO_2 photoreduction processes, after photocatalysis the reaction solution is measured by UV-vis absorption spectroscopy. As shown in Fig. 5, using AN as the solvent, the color of reaction mixture is changed from orange to dark blue color upon light irradiation for about 10 min. This observation is accompanied by the formation of a new absorption band (ca. 500-700 nm) in the UV-vis absorption spectrum, together with the blue shift of the initial absorption bands at ca. 300 nm. The broad absorption band is attributed to the intramolecular charge-transfer from metal center to pyridinium moiety. Similar results are also detected when using other solvents as the reaction medium (Fig. S4), mainly because of the generation of a reducing Co¹-complex during photocatalytic CO₂ reduction reaction. The findings of UV-vis absorption measurements further indicate that the photochemical CO₂ conversion reaction is triggered by light irradiation. Interestingly, the color change of reaction mixture is also found when N₂ is used as the gas feedstock instead of CO₂ (Fig. S5), suggesting that the Co¹-complex can form as long as the process is operated in anaerobic condition.

Based on the results of CO₂ reduction evaluation and photo-/ electro-chemcial characterizations, a possible mechanism is proposed as illustrated in Scheme 1. Under light irradiation, semiconductor photocatalyst is excited and liberates electrons from valence band to conduction band [31]. The photogenerated electrons are then departed from the surface of photocatalyst and grasped easily by Co (II) ion, thus generating the active intermediate of Co^I complex [8]. Meanwhile, H₂ evolution reaction through combination of Co^I intermediate with protons to form Co^{III}-hydride is probably similar to the CO₂ conversion [27]. The cobalt ion allows a strong interaction with CO₂ to form a metal carbonate. After the production of metal carbonate, the negative charge of the oxygen atom of CO₂ increased as a result of backdonation from an occupied metal orbital to an unoccupied $CO_2 \pi$ orbital. Meanwhile the protonation is promoted and thus providing oxygen atom from activated CO₂ molecules by a proton to yield the reduction product CO [32]. During the processes, the properties of reaction solvent critically affect the generation and stability of active species through solvation. In view of the interaction between cobalt ion and solvent, the process of charge

Scheme 1. Diagram of solvent effect on photocatalytic CO₂ reduction system.

transfer between the metal ion and coordinated CO_2 is inevitably influenced by the nature of reaction solvent. As demonstrated from Scheme 1, a general explanation of solvent effects on photocatalytic CO_2 reduction is that the photoexicetd electrons are apt to be localized at oxygen atoms or carbon atoms of the metal- CO_2 carbonate, which is determined by the interaction between solvent and CO_2 molecules.

In conclusion, we have demonstrated a detailed study of solvent effects on photocatalytic CO_2 reduction catalysis mediated by cobalt complex. The properties of solvent play a crucial role in determining the activity and selectivity of CO_2 photoreduction. Moreover, electrochemical and photochemical measurements are proved to be of useful tools to provide new insights into the solvent effect in photocatalytic CO_2 reduction.

Acknowledgements

This research was sponsored by the Construction Projects of Undergraduate Course Teaching, Department of Guizhou Provincial Education (No. [2015]337), Guizhou Provincial Project on Science and Technology, Department of Science and Technology of Guizhou Province (No. [2017]1198), and Scientific Research Foundation for Talented Scholars, Zunyi Normal College (BS [2014]08).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.jphotochem.2017.09.019.

References

- J. Gong, L. Zhang, Z.J. Zhao, Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and related reaction mechanisms, Angew. Chem. Int. Ed (2017), doi:http://dx.doi.org/10.1002/anie.201612214.
- [2] K. Dong, R. Razzaq, Y. Hu, K. Ding, Homogeneous reduction of carbon dioxide with hydrogen, Top. Curr Chem. 375 (2017) 23.
- [3] T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders, Nature 277 (1979) 637–638.
- [4] G.H. Dong, L.Z. Zhang, Porous structure dependent photoreactivity of graphitic carbon nitride under visible light, J. Mater. Chem. 22 (2012) 1160–1166.
- [5] S.B. Wang, X.C. Wang, Imidazolium ionic liquids, imidazolylidene-heterocyclic carbenes, and zeolitic imidazolate frameworks for CO₂ capture and photochemical reduction, Angew. Chem. Int. Ed. 55 (2016) 2308.
- [6] S.B. Wang, X.C. Wang, Multifunctional metal-organic frameworks for photocatalysis, Small 11 (2015) 3097.

Please cite this article in press as: J. Lin, et al., Effect of solvents on photocatalytic reduction of CO₂ mediated by cobalt complex, J. Photochem. Photobiol. A: Chem. (2017), http://dx.doi.org/10.1016/j.jphotochem.2017.09.019

6

ARTICLE IN PRESS

J. Lin et al./Journal of Photochemistry and Photobiology A: Chemistry xxx (2017) xxx-xxx

- [7] K. Dong, R. Razzaq, Y. Hu, K. Ding, Homogeneous reduction of carbon dioxide with hydrogen, Top. Curr. Chem. 375 (2017) 23.
- [8] R. Ziessel, J. Hawecker, J.M. Lehn, Photogeneration of carbon monoxide and of hydrogen via simultaneous photochemical reduction of carbon dioxide and water by visible-light irradiation of organic solutions containing tris(2, 2'bipyridine) ruthenium(II) and cobalt(II) species as homogeneous catalysts, Helv. Chim. Acta 69 (1986) 1065–1084.
- [9] Z.G. Chai, Q. Li, D.S. Xu, Photocatalytic reduction of CO₂ to CO utilizing a stable and efficient hetero-homogeneous hybrid system, RSC Adv. 4 (2014) 44991– 44995.
- [10] J.L. Lin, Y.D. Hou, Y. Zheng, X.C. Wang, Integration of $[(Co(bpy)_3)^{2*}$ electron mediator with heterogeneous photocatalysts for CO₂ conversion, Chem. Asian J. 9 (2015) 2468–2474.
- [11] M.M.T. Khan, D. Chatterjee, J. Bhatt, Photofixation of carbon dioxide in semiconductor particulate and microbial systems, J. Chem. Sci. 104 (1992) 747–752.
- [12] C. Reichardt, T. Welton, Solvents and Solvent Effects in Organic Chemistry, John Wiley & Sons, 2011.
- [13] B.A. Rosen, J.J. Haan, P. Mukherjee, B. Braunschweig, W. Zhu, A. Khojin, D.D. Dlott, R.I. Masel, In situ spectroscopic examination of a low overpotential pathway for carbon dioxide conversion to carbon monoxide, J. Phys. Chem. C 116 (2012) 15307–15312.
- [14] S.B. Wang, W.S. Yao, J.L. Lin, Z.X. Ding, X.C. Wang, Cobalt imidazolate metalorganic frameworks photosplit $\rm CO_2$ under mild reaction conditions, Angew. Chem. Int. Ed. 53 (2014) 1034.
- [15] B.A. Rosen, A. Salehikhojin, M.R. Thorson, W. Zhu, D.T. Whipple, J.A. Kenis, R.I. Masel, Ionic liquid-mediated selective conversion of CO₂ to CO at low overpotentials, Science 334 (2011) 643–644.
- [16] B.J. Liu, H. Matsumoto, H. Yoneyama, T. Torimoto, Effect of solvents on photocatalytic reduction of carbon dioxide using TiO₂ nanocrystal photocatalyst embedded in SiO₂ matrices, J. Photochem. Photobiol. A 108 (1997) 187–192.
- [17] T. Ogata, S. Yanagida, B.S. Brunschwig, E. Fujita, Mechanistic and kinetic studies of cobalt macrocycles in a photochemical CO₂ reduction system: evidence of Co-CO₂ adducts as intermediates, J. Am. Chem. Soc. 117 (1995) 6708–6716.
- [18] D.M. Rakowski, D.L. Dubois, Development of molecular electrocatalysts for CO₂ reduction and H₂ production/oxidation, Acc. Chem. Res. 42 (2009) 1974–1982.

- [19] J.L. Lin, Z.X. Ding, Y.D. Hou, X.C. Wang, Ionic liquid co-catalyzed artificial photosynthesis of CO, Sci. Rep. 3 (2013) 1056.
- [20] M. Jitaru, Electrochemical carbon dioxide reduction-fundamental and applied topics, J. Univ. Chem. Technol. Metall. 42 (2007) 333–344.
- [21] J. Zhou, W.C. Chen, C.Y. Sun, L. Han, C. Qin, M.M. Chen, X.L. Wang, E.B. Wang, Z. M. Su, Oxidative polyoxometalates modified graphitic carbon nitride for visible-light CO₂ reduction, ACS Appl. Mater. Interface 13 (2017) 11689–11695.
- [22] J.N. Qin, S.B. Wang, H. Ren, Y.D. Hou, X.C. Wang, Photocatalytic reduction of CO₂ by graphitic carbon nitride polymers derived from urea and barbituric acid, Appl. Catal. B: Environ. 179 (2017) 1–8.
- [23] S.B. Wang, X.C. Wang, Photocatalytic CO₂ reduction by CdS promoted with a zeolitic imidazolate framework, Appl. Catal. B: Environ. 162 (2015) 494–500.
- [24] S.B. Wang, J.L. Lin, X.C. Wang, Semiconductor-redox catalysis promoted by metal-organic frameworks for CO2 reduction, Phys. Chem. Chem. Phys. 16 (2014) 14656–14660.
- [25] H. Fillon, E.L. Gall, C. Gosmini, J. Périchon, Pure acetonitrile as solvent for the efficient electrochemical conversion of aryl bromides in organozinc species and their coupling reaction with acetyl chloride, Tetrahedron Lett. 43 (2002) 5941–5944.
- [26] Y.G. Budnikova, A. Kafiyatullina, Y.M. Kargin, O. Sinyashin, Electrochemical reduction of cobalt and nickel complexes with ligands stabilizing metal in low oxidation state, Russ. Chem. Bull. 52 (2003) 1504–1511.
- [27] S.C. Marinescu, J.R. Winkler, H.B. Gray, Molecular mechanisms of cobaltcatalyzed hydrogen evolution, Proc. Natl. Acad. Sci. 109 (2012) 15127–15131.
- [28] R.R. Prabhu, M.A. Khadar, Characterization of chemically synthesized CdS nanoparticles, Pramana J. Phys. 65 (2005) 801–807.
- [29] K. Sivaraj, K.P. Elango, Synthesis, spectral characterization and solvent effects on the electro-reduction of mixed ligand cobalt(III) complexes, J. Solution Chem. 39 (2010) 1681–1697.
- [30] A.E. Reed, L.A. Curtiss, F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chem. Rev. 88 (1988) 899–926.
- [31] F. Wen, C. Li, Hybrid artificial photosynthetic systems comprising semiconductors as light harvestersand biomimetic complexes as molecular cocatalysts, Acc. Chem. Res. 46 (2013) 2355–2364.
- [32] Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrocatalytic process of CO selectivity in electrochemical reduction of CO₂ at metal electrodes in aqueous media, Electrochim. Acta 39 (1994) 1833–1839.