
REDUCTION OF N-ALKOXYCARBONYLLACTAMS WITH NaBH<sub>4</sub>/EtOH-H<sup>+</sup>: A FACILE SYNTHESIS OF  $\alpha$ -ETHOXYURETHANES

Tatsuo Nagasaka,<sup>\*</sup> Hirohisa Tamano, and Fumiko Hamaguchi Tokyo College of Pharmacy, 1432-1 Horinouchi, Hachioji, Tokyo 192-03, Japan

<u>Abstract</u> — Reduction of N-alkoxycarbonyllactams with  $NaBH_4/H^+$  in ethanol (Speckamp's condition) afforded  $\alpha$ -ethoxyurethanes (Shono's compounds) in good yields.

New methods for the carbon-carbon bond formation at the  $\alpha$ -position of amines <u>via</u> acyliminium ion (<u>2</u>) have been developed in recent years.<sup>1</sup> Among these,  $\alpha$ -alkoxyamides<sup>2</sup> (<u>1</u>; R<sup>2</sup> = alkyl) and  $\alpha$ -alkoxyurethanes<sup>3</sup> (<u>1</u>; R<sup>2</sup> = alkoxy), precursors for <u>2</u>, are conveniently available from the reduction of imides with NaBH<sub>4</sub>/EtOH-H<sup>+</sup> or from the anodic oxidation of urethanes, respectively. In this paper, a convenient alternative method for the synthesis of cyclic N-alkoxycarbonyl-2-ethoxyamines (7 - 9) is described.



Although the reduction of N-acyllactams (e. g. <u>4a</u>, <u>4b</u>, <u>5a</u>) with NaBH<sub>4</sub> did not afford  $\alpha$ -ethoxyamides (e. g. <u>7a</u>, <u>7b</u>, <u>8a</u>), the reductinon of N-alkoxycarbonyllactams (<u>4c-q</u> - <u>6c-q</u>) in a similar condition gave the desired  $\alpha$ -ethoxyurethanes (<u>7</u> - <u>9</u>) in good yields. The results are shown in Table 1. The reaction was carried out by the modification of Speckamp's procedure<sup>2</sup>: A small amount of bromocresol green (pH 3.8 yellow - 5.4 blue) was used as an internal indicator and the optimum reaction temperature was between -6° and 0°.

The investigation of the carbon-sulfur, carbon-nitrogen and carbon-carbon bonds formation at the  $\alpha$ -position of amines using these  $\alpha$ -ethoxyurethane are now in progress.

Table 1. Reduction of N-Alkoxycarbonyllactams<sup>a</sup> to  $\alpha$ -Ethoxyurethanes<sup>b</sup>

| (CH <sub>2</sub> )n<br>N 0<br>C=0<br>R | NaBH₄<br>──EtOH/H <sup>+</sup> | CH2)n<br>NOEt<br>C=O<br>R |
|----------------------------------------|--------------------------------|---------------------------|
| 4 n = 1                                |                                | <u>7</u> n = 1            |
| <u>5</u> n = 2                         |                                | <u>8</u> n = 2            |
| <u>6</u> n≃3                           |                                | <u>9</u> n = 3            |

Yield  $(%)^{C}$  and bp (°C/mmHg) of Products (7, 8, 9)

|   |   | R                   |    | 7                | <u>8</u>       |                   | 9  | <u>.</u>           |
|---|---|---------------------|----|------------------|----------------|-------------------|----|--------------------|
| a | : | Me                  |    | 0 <sup>d</sup>   | 0 <sup>ć</sup> | 1                 |    |                    |
| b | : | Ph                  |    | $0^{\mathbf{d}}$ | -              |                   | -  |                    |
| с | : | OMe                 | 80 | (120°/3)         | <u>-</u> 79    | (85°/4)           |    |                    |
| d | : | OEt                 | 83 | (83°/2)          | -              |                   | 64 | (83°/2)            |
| е | : | OCH <sub>2</sub> Ph | 83 | (110°/2)         | 80             | (_ <sup>e</sup> ) | 88 | ( - <sup>e</sup> ) |
|   |   |                     | 88 | (75°/2)          | 70             | (70°/2)           | 65 | (78°/2)            |
| g | : | $OCH_2CH=CH_2$      | 88 | (105°/2)         | -              |                   | _  |                    |

a) N-Alkoxycarbonyllactams ( $\underline{4} - \underline{6}$ ) were prepared by the alkoxycarbonylation of lactams with chloroformates (or di-<u>tert</u>-butyl dicarbonate for <u>tert</u>-butoxy-carbonylation ) and sodium hydride in 60-80% yields. b) All the products gave satisfactory ir, <sup>1</sup>H-nmr and ms spectra. c) Isolated yield. d) In the case of N-acyllactams, the cleavage of N-acyl groups and the reduction of the ring-opened compounds were observed. e) Purified by chromatography.

## REFERENCES

- 1 For a review: W. N. Speckamp, <u>Rec. Trav. Chim</u>., 1981, <u>100</u>, 345.
- 2 J. C. Hubert, J. B. P. A. Wijnberg and W. N. Speckamp, <u>Tetrahdron</u>, 1975, <u>31</u>, 1437 and their recent works.
- 3 T. Shono, H. Hamaguchi and Y. Matsumura, <u>J. Am. Chem. Soc</u>., 1975, <u>97</u>, 4264 and their recent works.

Received, 23rd January, 1986