This article was downloaded by: [University of Texas Libraries] On: 25 November 2014, At: 20:38 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lsyc20

The Reaction of Ninhydrin with Trimethylbenzenes under Friedel-Crafts Reaction Conditions

Hyun Nam Song a , Hong Jung Lee a , Mi Ra Seong b , Keum Shin Jung b & Jae Nyoung Kim a

^a Department of Chemistry , Chonnam National University , Kwangju, 500-757, Korea

^b Central Research Institute, Hanmi Pharmaceutical Co. Ltd., 371, Sampyoung-dong, Sungnam, Kyonggi-Do, 463-400, Korea Published online: 04 Dec 2007.

To cite this article: Hyun Nam Song , Hong Jung Lee , Mi Ra Seong , Keum Shin Jung & Jae Nyoung Kim (2000) The Reaction of Ninhydrin with Trimethylbenzenes under Friedel-Crafts Reaction Conditions, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 30:6, 1057-1066, DOI: <u>10.1080/00397910008087123</u>

To link to this article: http://dx.doi.org/10.1080/00397910008087123

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no

representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

THE REACTION OF NINHYDRIN WITH TRIMETHYLBENZENES UNDER FRIEDEL-CRAFTS REACTION CONDITIONS

Hyun Nam Song, Hong Jung Lee, Mi Ra Seong,[#] Keum Shin Jung,^{*} and Jae Nyoung Kim*

Department of Chemistry, Chonnam National University, Kwangju 500-757, Korea [#]Central Research Institute, Hanmi Pharmaceutical Co. Ltd., 371, Sampyoung-dong, Sungnam, Kyonggi-Do 463-400, Korea

Abstract : The reaction of ninhydrin with 1,2,3- and 1,2,4-trimethylbenzene in the presence of H_2SO_4 or AlCl₃ afforded 2-monoaryl and 2,2-diaryl-1,3-indanedione derivatives as the major products. With 1,3,5-trimethylbenzene as the arene nucleophile, either a reduction product or an indenoindanone derivative was obtained depending upon the catalyst employed in the reaction.

Recently, Friedel-Crafts type reactions of some cyclic ketone systems such as ninhydrin, alloxan, isatin, and parabanic acid have been examined extensively.¹ Diarylated derivatives of these heterocyclic compounds have shown many interesting biological activities such as antibacterial, antiprotozoal, anti-inflammatory, anticonvulsant, anticancer, laxative and diuretic activities.²

^{*}To whom correspondence should be addressed.

In previous studies we showed that the reaction of ninhydrin (1,2,3-indantrione) and arenes in the presence of concentrated sulfuric acid afforded 2-monoaryl and 2,2-diaryl-1,3-indanedione derivatives in moderate yields depending on the arenes.^{1c} In a continuation of this work we examined the reaction of ninhydrin and 1,3,5-trimethylbenzene and observed the formation of unusual compounds (*vide infra*). Thus in this report we wish to describe the reaction of ninhydrin with various trimethylbenzenes.

The reaction of ninhydrin and 1,2,3-trimethylbenzene in the presence of sulfuric acid (1.5 equiv) gave mono-arylated derivatives (1a and 1a') and di-arylated derivatives (2a and 2a') as the major products as expected from our previous report.^{1c} The two mono-arylated products 1a and 1a' can be easily separated, and identified from their ¹H and ¹³C NMR spectra (see Experimental section). For the diarylated derivatives isomeric mixtures were observed and separation of 2a and 2a' could not be achieved. Further reaction of 2a with ninhydrin afforded 3a in 3% isolated yield (Scheme 1).

The reaction of ninhydrin and 1,2,4-trimethylbenzene gave 1b (13%) and 2b (29%) as the major products. However, an unusual reduction product, 4b, was obtained in 7% isolated yield (Scheme 2). The formation of 4b could be explained as shown in Scheme 3. Mono-arylated compound 1b in the reaction mixture could react further with 1,2,4-trimethylbenzene to give either the diarylated derivative 2b or the reduction product 4b depending on the reaction pathway. Further experiments in order to clarify the reaction mechanism were performed: The reaction of isolated **1b** in 1,2,4-trimethylbenzene in the presence of sulfuric acid (1.5 equiv) gave 4b in 5% yield together with 2b in 26% isolated yield. The formation of the diarylmethane derivative3 was confirmed by GCMS analysis of the nonpolar components of the reaction mixture.

The reaction of ninhydrin and 1,3,5-trimethylbenzene did not afford the generally expected mono- and diarylated derivatives. From the reaction mixture we isolated the reduction product 4c and the isocoumarin derivative 5c,⁴ unexpectedly (Scheme 4). TLC analysis

4b (7%)

Scheme 3

of the reaction mixture showed the presence of some unidentified compounds, however, we could not isolate them. The formation of 4c can be rationalized as in the case of **4b** in **Scheme 3**. The formation of 5c is noteworthy. As shown in Scheme 4 product 4a, generated initially, undergoes acid catalyzed intramolecular epoxidation followed by ring opening to give isocoumarin derivative 5c. In the ¹H NMR spectrum of 5c, broad singlets around 2.00 and 6.71 ppm corresponding to the ortho dimethyl and the two aromatic protons of the 1,3,5-trimethylphenyl moiety indicate that free rotation of 1,3,5-trimethylphenyl group is somewhat hampered by steric hindrance.

Changing the catalyst from sulfuric acid to aluminium chloride generates more complex product mixtures and results in lower yields of the isolated products. As shown in Scheme 5 similar results, to the sulfuric acid catalyzed reactions, were observed in the cases of 1,2,3- and 1,2,4-trimethylbenzene. Low yields of 1 (17%, 1a a mixture) and 2a (14%) were obtained with and 1a' as 1,2,3-trimethylbenzene and low yields of 1b and 2b were obtained from 1,2,4-trimethylbenzene. In the reaction of ninhydrin and 1,3,5-trimethylbenzene in the presence of AlCl₃ (2.2 equiv), we could isolate 1b and the unexpected indenoindanone derivative 6. Scheme 6 rationalizes the formation of 1b and 6. The structure of 6 was confirmed further by converting to its acetonide 7. The formation of 1b results from the Lewis acid catalyzed methyl group migration⁵ in order to lessen the steric hindrance of the two ortho methyl groups.

Further studies on the reaction mechanism for the formation of **4**, **5**, and **6** are currently underway. Extension of the reaction with tetra- and pentamethylbenzene derivatives are also currently ongoing, and the results of this work will be published in due course.

EXPERIMENTAL

General procedure for the reaction of ninhydrin and trimethylbenzenes in the presence of sulfuric acid.

Scheme 5

1062

NINHYDRIN AND TRIMETHYLBENZENES

To a stirred suspension of ninhydrin (1.0 g, 5.6 mmol) in the corresponding trimethylbenzene (10 mL) was added concentrated sulfuric acid (840 mg, 8.5 mmol) and the mixture stirred vigourously at room temperature for 3 h. The reaction mixture was poured into cold water (50 mL) and diluted with ether (100 mL). The organic layer was washed with brine, dried with MgSO₄, and evaporated to dryness. After flash column chromatography (hexane/ethyl acetate, 9/1), the corresponding products were obtained. Their spectroscopic data are as follows.

1a : 706 mg (45%); mp 186–187 °C; ¹H NMR (CDCl₃) δ 2.15 (s, 3H), 2.24 (s, 3H), 2.39 (s, 3H), 3.41 (brs, 1H), 6.89–6.97 (m, 2H), 7.80–8.06 (m, 4H); ¹³C NMR (CDCl₃) δ 15.82, 18.06, 20.81, 81.27, 124.20, 125.18, 127.28, 132.09, 136.37 (2C), 137.45, 137.53, 140.81, 198.19; Mass (70 eV) m/z (rel intensity) 104 (67), 120 (33), 236 (48), 132 (51), 147 (50), 280 (M⁺, 100); HRMS Calcd. for C₁₈H₁₆O₃ 280.1100, Found 280.1105.

1a' : 204 mg (13%); mp 159-160 °C; ¹H NMR (CDCl₃) δ 2.10 (s, 3H), 2.21 (s, 6H), 7.03 (s, 2H), 7.85-8.08 (m, 4H); ¹³C NMR (CDCl₃) δ 15.20, 20.61, 79.44, 124.22, 125.30, 133.16, 136.48 (2C), 137.26, 141.09, 197.93; Mass (70 eV) m/z (rel intensity) 77 (42), 91 (41), 104 (100), 105 (38), 120 (40), 147 (43), 237 (58), 280 (M⁺, 93); HRMS Calcd. for C₁₈H₁₆O₃ 280.1100, Found 280.1112.

2a and **2a'** as a mixture : 320 mg (15%); ¹H NMR (CDCl₃) δ 2.11, 2.12, 2.13, 2.14, 2.20, 2.21, and 2.24 (seven peaks corresponding to seven different methyl groups), 6.42–8.08 (complicated aromatic peaks); ¹³C NMR (CDCl₃) δ 15.13; 16.14, 19.27, 19.52, 20.67, 20.72, 20.83, 67.40, 70.30, 123.94, 124.04, 126.99, 127.40, 127.80, 127.85, 129.24, 132.55, 133.93, 134.56, 134.77, 135.18, 135.53, 135.59, 135.85, 136.43, 136.66, 137.31, 141.17, 141.77, 199.85, 200.38; Mass (70 eV) m/z (rel intensity) 77 (14), 133 (13), 191 (9), 349 (15), 380 (21), 381 (11), 382 (M⁺, 100), 383 (24); HRMS Calcd. for C₂₇H₂₆O₂ 382.1934, Found 382.1943.

3a : 91 mg (3%); mp 277-278 °C; ¹H NMR (CDCl₃ + DMSO-d₆) δ 1.72 (s, 3H), 2.09 (s, 3H), 2.12 (s, 6H), 2.16 (s, 3H), 2.35 (s, 3H), 6.21 (s, 1H), 6.63 (s, 1H), 6.86 (s, 1H), 7.67-8.10 (m, 8H); ¹³C NMR $(\text{CDCl}_3 + \text{DMSO-d}_6) \delta$ 15.10, 16.30, 18.10, 19.11, 20.59, 69.76, 81.10, 123.46, 123.96, 126.92, 129.65, 131.63, 132.41, 134.47, 134.85, 135.15, 136.23, 136.58, 136.74, 137.12, 139.10, 139.98, 140.29, 198.80, 199.15; Mass (70 eV) m/z (rel intensity) 77 (32), 103 (28), 104 (43), 105 (26), 251 (25), 382 (32), 542 (M⁺, 100), 543 (30); HRMS Calcd. for C₃₆H₃₀O₅ 542.2094, Found 542.2104.

1b : 205 mg (13%); mp 131–132 °C; ¹H NMR (CDCl₃) δ 2.07 (s, 3H), 2.09 (s, 3H), 2.25 (s, 3H), 3.20 (brs, 1H), 6.85 (s, 1H), 6.94 (s, 1H), 7.80–8.00 (m, 4H); ¹³C NMR (CDCl₃) δ 19.12, 19.25, 20.81, 80.29, 124.17, 128.91, 131.46, 133.82, 133.95, 134.25, 136.48, 137.31, 140.87, 198.41; Mass (70 eV) m/z (rel intensity) 43 (29), 51 (20), 52 (23), 77 (48), 103 (66), 104 (100), 120 (43), 132 (45), 147 (44), 237 (61), 280 (M⁺, 65); HRMS Calcd. for C₁₈H₁₆O₃ 280.1100, Found 280.1103.

2b : 620 mg (29%); mp 188–190 °C; ¹H NMR (CDCl₃) δ 1.95 (s, 6H), 2.01 (s, 6H), 2.09 (s, 6H), 6.65 (s, 2H), 6.85 (s, 2H), 7.74–8.00 (m, 4H); ¹³C NMR (CDCl₃) δ 19.11, 19.29, 21.48, 69.68, 123.96, 130.44, 132.88, 133.85, 134.05, 135.59, 135.77, 135.88, 141.55, 200.26; Mass (70 eV) m/z (rel intensity) 133 (40), 146 (35), 234 (23), 349 (22), 368 (24), 382 (M⁺, 100), 383 (32); HRMS Calcd. for C₂₇H₂₆O₂ 382.1934, Found 382.1939.

4b : 104 mg (7%); mp 142-144 °C; ¹H NMR (CDCl₃) δ 2.12 (s, 3H), 2.18 (s, 3H), 2.20 (s, 3H), 4.42 (s, 1H), 6.62 (s, 1H), 6.98 (s, 1H), 7.85-8.07 (m, 4H); ¹³C NMR (CDCl₃) δ 19.15, 19.30, 19.69, 58.87, 123.56, 129.59, 130.49, 132.34, 134.41, 134.45, 135.79, 136.45, 142.45, 199.10; Mass (70 eV) m/z (rel intensity) 50 (25), 63 (25), 76 (38), 77 (30), 91 (25), 103 (25), 104 (33), 119 (26), 146 (29), 147 (100), 264 (M⁺, 39); HRMS Calcd. for C₁₈H₁₆O₂ 264.1151, Found 264.1162.

4c : 400 mg (27%); mp 217–218 °C; ¹H NMR (CDCl₃) δ 1.77 (s, 3H), 2.27 (s, 3H), 2.40 (s, 3H), 4.75 (s, 1H), 6.79 (s, 1H), 6.96 (s, 1H), 7.85–8.06 (m, 4H); ¹³C NMR (CDCl₃) δ 20.87, 21.09, 58.25, 123.23, 127.72, 129.22, 129.66, 135.64, 135.89, 137.65, 138.67, 141.39, 198.93; Mass (70 eV) *m/z* (rel intensity) 43 (34), 52 (31), 77 (30), 119 (47), 146 (44), 147 (43), 149 (71), 178 (47), 231 (99), 246 (94), 264 (M⁺, 100); HRMS Calcd. for C₁₈H₁₆O₂ 264.1151, Found 264.1149.

5c : 376 mg (24%); mp 139-140 °C; ¹H NMR (CDCl₃) 8 2.00 (brs, 6H), 2.20 (s, 3H), 5.43 (brs, 1H), 6.71 (s, 2H), 7.57-7.79 (m, 4H); ¹H

NMR (DMSO-d₆) δ 2.00 (brs, 6H), 2.24 (s, 3H), 6.87 (s, 2H), 7.70–7.94 (m, 4H), 9.07 (brs, 1H, D₂O exchangeable); ¹³C NMR (CDCl₃) δ 19.89, 20.98, 103.92, 124.10, 125.66, 127.48, 128.44, 128.69, 131.52, 131.97, 134.31, 139.69, 144.58, 167.25, 203.46; Mass (70 eV) m/z (rel intensity) 65 (20), 91 (21), 119 (28), 146 (84), 147 (100), no M⁺; Anal. Calcd. for C₁₈H₁₆O₃: C, 77.12; H, 5.75. Found: C, 77.33; H, 5.69.

General procedure for the reaction of ninhydrin and trimethylbenzenes in the presence of aluminium chloride.

To a stirred suspension of ninhydrin (1.0 g, 5.6 mmol) in corresponding trimethylbenzene (10 mL) was added aluminium chloride (1.65 g, 12.3 mmol) and stirred vigorously at room temperature for 3 h. The reaction mixture was poured into cold water (50 mL) and diluted with ether (100 mL). The organic layers were washed with brine, dried with MgSO₄, and evaporated to dryness. After flash column chromatography (hexane/ethyl acetate, 9/1), the corresponding products were obtained.

6 : 95 mg (6%); ¹H NMR (CDCl₃) δ 2.28 (s, 3H), 2.81 (s, 3H), 3.11 (s, 2H), 3.40 (brs, 2H), 6.80 (s, 1H), 6.97 (s, 1H), 7.47–7.85 (m, 4H); ¹³C NMR (CDCl₃) δ 19.02, 21.18, 40.66, 87.69, 87.84, 123.48, 124.68, 126.56, 129.91, 131.20, 133.36, 135.02, 136.35, 137.17, 139.45, 139.55, 152.44, 203.87; Mass (70 eV) m/z (rel intensity) 105 (45), 206 (68), 238 (68), 147 (51), 247 (65), 262 (84), 280 (M⁺, 100); HRMS Calcd. for C₁₈H₁₆O₃ 280.1100, Found 280.1099.

7 : mp 162–164 °C; ¹H NMR (CDCl₃) δ 1.22 (s, 3H), 1.32 (s, 3H), 2.30 (s, 3H), 2.78 (s, 3H), 3.13 (d, J = 18 Hz, 1H), 3.40 (d, J = 18 Hz, 1H), 6.84 (s, 1H), 6.99 (s, 1H), 7.48–7.92 (m, 4H); ¹³C NMR (CDCl₃) δ 19.55, 21.22, 28.28, 28.81, 37.54, 96.70, 97.97, 117.76, 123.92, 125.17, 126.42, 130.11, 130.84, 134.80, 134.94, 136.48, 136.89, 139.84, 141.19, 151.05, 202.70; Mass (70 eV) m/z (rel intensity) 189 (29), 206 (54), 247 (45), 263 (100), 305 (64), 320 (M⁺, 9); HRMS Calcd. for C₂₁H₂₀O₃ 320.1413, Found 320.1417.

Acknowledgements. We wish to thank the Chonnam National University Research Foundation for financial support of this work.

REFERENCES

- (a) Klumpp, D. A.; Yeung, K. Y.; Prakash, G. K. S. and Olah, G. A. J. Org. Chem. 1998, 63, 4481. (b) Klumpp, D. A.; Yeung, K. Y.; Prakash, G. K. S. and Olah, G. A. Synlett 1998, 918. (c) Song, H. N.; Seong, M. R.; Son, J. S. and Kim, J. N. Synth Commun. 1998, 28, 1865. (d) Moubasher, R. J. Am. Chem. Soc. 1951, 73, 3245. (e) Schmitt, G.; An, N. D.; Poupelin, J. P.; Vebrel, J. and Laude, B. Synthesis 1979, 758. (f) Black, D. St. C.; Bowyer, M. C.; Condie, G. C.; Craig, D. C. and Kumar, N. Tetrahedron 1994, 50, 10983. (g) Bullington, J. L. and Dodd, J. H. J. Org. Chem. 1993, 58, 4833.
- (a) Garrido, F.; Ibanez, J.; Gonalons, E. and Giraldez, A. Eur. J. Med. Chem. 1975, 10, 143. (b) Poupelin, J. P.; Saint-Ruf, G.; Perche, J. C.; Roussey, J. C.; Laude, B.; Narcisse, G.; Bakri-Logeais, F. and Hubert, F. Eur. J. Med. Chem. 1980, 15, 253. (c) Poupelin, J. P.; Saint-Ruf, G.; Perche, J. C.; Lacroix, R.; Uchida-Ernouf, G.; Narcisse, G. and Hubert, F. Eur. J. Med. Chem. 1979, 14, 171. (d) Shoichet, B. K.; Stroud, R. M.; Santi, D. V.; Kuntz, I. D. and Perry, K. M. Science 1993, 259, 1445.
- From the nonpolar hydrocarbon components of the reaction mixtures, we could identify the expected diarylmethane derivative: MS (70 eV) m/z (rel intensity) 91 (11), 117 (14), 132 (100), 133 (16), 237 (40), 238 (M^{*}, 11).
- (a) Napolitano, E. Org. Prepn. Proce. Int. 1997, 29, 631. (b) Shishido, K.; Hiroya, K.; Yamashita, A.; Tokunaga, Y. and Fukumoto, K. Heterocycles 1990, 30, 253.
- (a) Harwood, L. M. Polar Rearrangements, Oxford Chemistry Primers, pp 69-73.
 (b) Maslak, P.; Fanwick, P. E. and Guthrie, R. D. J. Org. Chem. 1984, 49, 655.

Received in the UK 24 February 1999