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Synthetic Studies of 18-Membered Antitumor Macrolide, Tedanolide. 2.
Stereoselective Synthesis of the C1—C7 Fragment via a Mismatched
but Highly Efficient Sharpless Dihydroxylation

Tomohiro MATSUSHIMA,® Michiko MoRr1,” Noriyuki NAKAJIMA,* Hiroshi MAEDA,?
Jun-ichi Uenisr,” and Osamu YONEMITSU*®
Faculty of Pharmaceutical Sciences, Hokkaido University,* Sapporo 0600812, Department of Chemistry, Okayama

University of Science, Okayama 700-0005, and Biotechnology Research Center, Toyama Prefectural University .
Kosugi, Toyama 939-0311, Japan. Received May 26, 1998; accepted July 6, 1998

The C1—C7 fragment (4) of tedanolide (1) was synthesized starting from methyl (R)-3-hydroxy-2-methyl-
propionate via a mismatched but highly efficient Sharpless dihydroxylation of the C1—C7 «,B-unsaturated ester (6)
with AD-mix-a.
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Tedanolide (1) was isolated from a Caribbean sponge
Tedania ignis as a tumor-inhibitory macrolide in extremely
low yield, and its structure was elucidated by Schmitz et
al. in 1984.1% Because of the unusual structural feature
having four labile aldol units, an a-epoxy alcohol, and an
18-membered lactone constructed with the C16 primary
(not the usual secondary) hydroxy group, synthesis of 1
was presumed to be difficult. Recently, we reported the
synthesis of the 18-membered lactone (3),> which is ex-
pected as a key intermediate to 1, via highly efficient
lactonization® of the corresponding seco-acid. In macro-
lide synthesis, the molecular design of a seco-acid suitable
for macrolactonization is extremely important®; hence,
after conformational analyses of seco-acid derivatives with
the aid of molecular mechanics (MM) calculation® we
designed the seco-acid, which was first synthesized via
condensation of C1—C7 (4), C8—Cl1, C13—Cl7, and
C18—C21 fragments,® although the procedure required
many improvements. In this report we describe an efficient
synthesis of 4, the most important fragment, starting from
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methyl (R)-3-hydroxy-2-methylpropionate (5) via a mis-
matched but highly efficient Sharpless dihydroxylation of
the o, f-unsaturated ester (6) using AD-mix-o.”

Compound 6 was smoothly synthesized from 5 as shown
in the following scheme.

Dihydroxylation of 6 with OsO, was next carefully
examined. The diastereoselective face selectivity of the
double bond in this reaction is mainly governed by the
conformation of 6. Two favorable conformations, A and
B, can be considered. A is the conformation controlled by
the 1,3-allylic strain,” whereas in B-conformation a large
R group is situated in an antiperiplanar position to the
double bond. Osmylation is usually expected to proceed
by an attack of OsO, to the A-conformation.” When 6
was treated with 5mol% of OsO, and an excess of
N-methylmorpholine N-oxide (NMO) at room tempera-
ture, a 1:3 mixture of diols, 11 and 12, was obtained. The
unexpected diol (12), formed by osmylation on the si-re
face of the B-conformation, was disappointingly the main
product. Therefore we had to switch the osmylation from
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(a) 1) TBDPSCI, imidazole, CH,Cly, 100%; 2) LiBHg, Et,0, 100%. (b) 1) Swern oxid; 2) PhsP=CHCO;Me, CeH,
2 steps 98%; 3) DIBAH, CH,Cly, 99%; 4) (+)-DET, (i-PrO),Ti, TBHP, CHyCly, 99%. (¢) CH;=CHMgBr, CuCN,
Et,0-THF, sonication, 86%. (d) 1) DMPCH(OMe),, CSA, CHyCly, 92%; 2) DIBAH, CHyCly, 85%. (e) 1) TsCl,
EtsN, DMAP, CH,Cly; 2) LiAlH,, THF, 2 steps 90%; 3) 0504, NMO, Me;,CO-H;0, 98%: 4) NalOy, MeOH-H,0;

5) PhyP=CHCO,Me, C¢H, 2 steps, 98%.
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Table 1. Dihydroxylation of 6 Table 2. Asymmetric Dihydroxylation of 6 and 139
Conditions Yield (%)  Ratio . Product
i Substrate AD-mix Yield (%) Ratio
050, (0.05eq), NMO® (2.0¢q), Me,CO-H,0, rt 78 1:3
AD-mix a (0.02eq), MSA® (1.0eq), +-BuOH-H,0, 1t 95 >99:<1 6 o 78 11(99):12 ( 1)
6 B 39 1M(1):12(8)
a) N-methylmorpholine N-oxide. 4) methanesulfonic amide. 13 o 83 14(6):15( 1)
13 p 93 14 ( 1):15 (12)
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diastereoselective to enantioselective. An AD-mix” is the
most convenient reagent for this purpose, and the osmyla-
tion on the re-si face of o,f-unsaturated esters can be
achieved with AD-mix-o.'” This is, unfortunately, a
mismatched case.!V

When 6 was treated with AD-mix-o (2.0 mol%) at room
temperature, surprisingly, the expected diol (11) was
obtained in excellent yield (95%) with almost complete
selectivity (>99% de). This result clearly shows that a
conformational change from B to A occurred in this
reaction. For this type of cinchona-catalyzed enantioselec-
tive dihydroxylation, a mechanism (Criegee-Corey-Noe
model) via a [3+ 2] cycloaddition of OsO, to an olefin in
a U-shaped binding pocket of catalysts composed of the
two parallel methoxyquinoline units was proposed.!® If
the 3,4-dimethoxybenzene part of 6 comes between the
methoxyquinoline units, the olefin in the A-conformation,
not in the B-conformation, can fit into the binding pocket.
This may provide a reason why the face-selectivity changes
from si-re to re-si. Inspection of CPK molecular models
reveals that 6 in the A-conformation can bind smoothly
to AD-mix-«, but only slightly to AD-mix-8 because of
steric hindrance caused by the bulky C6—C7 portion of
6. The C4 demethyl compound (13) is present in two A-
type conformations, which fit into AD-mix-a and -§;
hence, 13 should be smoothly oxidized by AD-mix-f as
well as -a.

Both 6 and 13 were treated with the two reagents under
the same conditions. The results shown in Table 2 are
consistent with our prediction, probably supporting the
CCN model'? for Sharpless asymmetric dihydroxylation,
although more conclusive evidence is still required.

Finally, 11 was readily converted to the C1—C7 frag-
ment (4) through four conventional reactions; oxidative

a) Reaction conditions: 6, 13 (50 gmol), AD-mix (0.01 eq), MeSO,NH, (0.02¢q),
-BuOH-H,O (1:1), rt, 6 h. .

acetal formation with DDQ'®; protection with a MOM
group; LiAlH, reduction; and protection with a pivaloyl
group. The overall yield for 19 steps starting from 5 to
the title compound (4) was 32.2%.
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