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Abstract: An improved synthesis of the C(I)-C(5) (E,Z)-dienoate segment of (+)-damavaricin D 

precursor 3 was accomplished using the unsaturated phosphonate reagent 9 in a (Z)-selective vinylogous Horner- 
Wadsworth-Emmons reaction. © 1999 Elsevier Science Ltd. All rights reserved. 

In our recently completed total synthesis of (+)-damavaricin D (DmD), the C(1)-C(5) (E, Z )-dienoate unit 

of macrocyclization precursor 3 was installed in 24% overall yield via an eight step sequence starting from 1.1 

The (Z)-enoate unit of 2 was generated with 8 : 1 selectivity using Still's (Z)-selective olefination procedure, 2 and 

the (E)-trisubstituted enoate was introduced subsequently by a conventional Horner-Wadsworth-Emmons 

react ion)  The most difficult step of this sequence was the selective DIBAL reduction of 2 that had to be 

performed under experimentally stringent conditions (THF, -100 °C to -78 °C) in order to minimize competitive 

reduction of other carbonyl functions in the molecule; the desired allylic alcohol was obtained in 62% yield along 

with 16% of the corresponding enal after one recycle of recovered starting material. 1 We describe herein the 

development of a more concise five-step route (30% overall yield) to the key dienoate intermediate 3 involving a 

(Z)-selective vinylogous Horner-Wadsworth-Emmons reaction using the unsaturated phosphonate reagent 9. 
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In the early stages of this program we explored the Horner-Wadsworth-Emmons reaction of aldehyde 4 

with the unsaturated phosphonate 5 as a route to the targeted (E,Z)-dienoate. a Our best result at that time was 

obtained by using LHMDS in Et20. However, because these conditions provided the (E,Z)-dienoate 6 with only 

1.5  : I selectivity, we were discouraged from attempting to apply this method to the DmD synthesis. 
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Evans and co-workers subsequently reported a successful application of this methodology in their total 

synthesis of (+)-macbecin. 5 Although they also obtained low selectivity (1.5 : 1) in the Horner-Wadsworth- 

Emmons reaction of i-PrCHO and 5, somewhat better selectivity (2.7 : 1) favoring (E,Z)-8 was achieved when 
macbecin precursor 7 was treated with a large excess (8 equiv) of the anion generated from phosphonate 5. 
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This result encouraged us to reexamine the viability of this method as a route to the damavaricin precursor 

3. To do so, however, required that we first develop a synthesis of the unsaturated phosphonate 9 reagent 

containing a ~-trimethylsilylethyl ester protecting group. We had already spent considerable effort orchestrating 

the protecting group combinations in 3 such that the aniline and carboxylic acid units could be liberated in a single 

step immediately prior to the macrolactamization reaction, and we did not wish to revisit this aspect of the 

synthesis.1 The synthesis of phosphonate 9 thus began with y-bromotiglic acid 10, obtained by bromination of 

tiglic acid as previously described. 6 It was necessary to protect the acid as allyl ester 11 prior to the Arbuzov 

reaction as trifluoroethyl esters were obtained when acid l0  was used, and the 2-trimethylsilyl ethyl ester of 10 

did not survive the Arbuzov conditions (complex mixtures were obtained). Esterification of 10 with allyl alcohol 

under Mitsunobu conditions 7 afforded 11 (76%), which was then submitted to the Arbuzov reaction with 2,2,2- 

trifluoroethyl phosphite (10 equiv) in the presence of catalytic Bu4NI (0.1 equiv), thereby providing phosphonate 

12 in 51% yield. 8,9 The allyl group was removed 1° (90%) and the resulting acid 13 was re-esterified with ~- 

trimethylsilylethanol, DCC, and DMAP to provide the targeted phosphonate reagent 9 (84%). 
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Reactions of phosphonate 9 and aldehyde 14 were explored to develop conditions that maximized 

selectivity for the (E,Z)-diene. Of the various base and solvent combinations examined, best results were obtained 

by use of potassium hexamethyldisilazide (KHMDS) in Et20: this combination provided (E,Z)-15 with 4.7 : 1 

selectivity (entry 1). Interestingly, addition of 18-crown-6 to this reaction, which in other systems serves to 

enhance (Z-)selectivity, 2 gave an 11 : 1 mixture favoring(E,E)-15 (entry 2). The (E,E)-diene also predominated 

by a significant margin in reactions using MeMgBr as the base (entry 8). Reactions performed using n-BuLi to 

deprotonate 9 were only marginally selective: when performed in Et20 or toluene (E,Z)-15 was obtined with 

1.3-1.6 : I selectivity, while the reaction with n-BuLi in THF gave a 2 : 1 mixture favoring (E,E)-15. While the 

stereoselectivity of the olefination reactions of 14 was insensitive to the number of equivalents of the phosphonate 

reagent employed (entries 3-5), the stereoselectivity of these reactions is temperature sensitive and best results 

were obtained when the aldehyde was added slowly to the phosphonate anion at -78 °C over a 0.5 to 1.0 h period. 
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Entry Equlv 9 Balm, Solvent Selectivity E,Z: E,E Yield 

1 1.4 KHMDS, Et20 4.7 : 1 84% 
2 2.9 KHMDS, Et20 , 18-crown-6 1 : 11 -- 
3 1.4 n-BuLi, Et20 1.6 : 1 73% 
4 5 n-BuLi, Et20 1.3 : 1 -- 
5 8 n-BuLl, Et20 1.3 : 1 80% 
6 5 n-BuLi, THF 1 : 2 -- 
7 5 n-BuLi, toluene 1.3 : 1 -- 
8 2.0 MeMgBr, Et20 1 : 9 -- 

(E, Z H .  = 

Encouraged by the results obtained in the reaction of 9 and 14, we explored the olefination reactions of 9 

with progressively more complex substrates. However, we were quickly disappointed to discover that the 

reaction of 9 and 16 was non-selective using KHMDS under the conditions developed for the reaction with 14. 

However, a 2 : 1 mixture favoring (E,Z)-17 was obtained using 2 equiv of 9 with n-BuLi as the base. When the 

olefination of 18 was performed using 2-4 equiv of 9, (E,Z)-19 was also obtained with 2 : 1 selectivity. 

Fortunately, selectivity in this case increased to 4 : 1 when 18 was treated with 8 equiv of the anion generated 

from 9. Under these conditions, (E,Z)-19 was obtained in 45% yield along with 32% of aldehyde 18 which 

could be recycled. Interestingly, the olefination of 18 with phosphonate reagent 5 under comparable condition s 

provided a 2.7 : 1 mixture of (E,Z) : (E,E) olefin isomers, suggesting that further modification of the ester unit 

may constititute a strategy to increase the stereoselectivity of these Homer-Wadsworth-Emmons reactions. 
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-78 °C for 2.5 h, then -60 to -50 °C, 1 h 66% 

9 (3 equiv), KN(TMS)2, Et20, -- 
-78 to - 30 °C, 2.5 h 
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Application of this methodology to an improved synthesis of 3 proceeded as follows. The carbamate 

functionality of 20 was introduced in 71% yield via a Curtius rearrangement ] l of the carboxylic acid generated by 

tris(dimethylamino)sulfonium difluorotrimethylsilicate (TAS-F, 2.2 equiv) mediated selective deprotection 12 of 1. 

Treatment of 20 with HFoEt3N in refluxing CH3CN afforded primary alcohol 21 (91%), which was 

subsequently oxidized using Swern conditions 13 to the corresponding aldehyde. Horner-Wadsworth-Emmons 

olefination of the crude aldehyde with 10 equiv of the lithium anion of 9 in Et20 afforded, after one recycle of the 

recovered aldehyde intermediate, 60% of a 4 : 1 mixture of (E,Z) : (E,E) dienoates 3 along with 13% of recovered 
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aldehyde. The desired DmD intermediate, (E,Z)-3 was isolated in 47% yield by HPLC, and proved to be identical 

in all respects to the intermediate utilized in our DmD total synthesis) This five step sequence thus provides DmD 

intermediate 3 in 30% overall yield from 1. 
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In summary, we have developed an improved synthesis of DmD intermediate 3 from precursor 1 using the 

vinylogous Horner-Wadsworth-Emmons reagent 9 in a (Z)-selective olefination sequence. Although it is not clear 

at present to what extent the reaction stereoselectivity of these vinylogous Horner-Wadsworth-Emmons reactions 

is governed by kinetic or thermodynamic considerations, 5J4 it is clear that synthetically useful results may be 

obtained by judicious selection and optimization of reaction conditions. 
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