Mining Sequence Space for Asymmetric Aminocatalysis: *N*-Terminal Prolyl-Peptides Efficiently Catalyze Enantioselective Aldol and Michael Reactions

Harry J. Martin, Benjamin List*1

Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA Fax +1(858)7847028; E-mail: blist@scripps.edu.

Received 28 February 2003

Abstract: *N*-Terminal prolyl-peptides efficiently catalyze asymmetric aldol and Michael reactions between acetone and *p*-nitrobenzaldehyde or β -nitrostyrene, respectively.

Key words: organocatalysis, enamine catalysis, aminocatalysis, peptides

Enantioselective organocatalysis with amines, also termed asymmetric aminocatalysis, is a useful strategy for several important carbonyl reactions.² Among the catalysts studied so far, the amino acid proline has arguably been the most successful in enamine involving reactions.³⁻⁶ Its popularity is based on the efficiency and stereoselectivity often encountered in proline-catalyzed reactions and on its inexpensive and non-toxic nature. Despite these attractive features, there is still room for improvement. For example, potentially useful donors such as acetaldehyde⁷ and acetophenone⁸ can not readily be used, stereoselectivities and yields can be sub-optimal, and a-unbranched aldehydes are notorious acceptors in proline-catalyzed aldol reactions.^{4c} In addition, there are several interesting enamine involving reactions that can not be catalyzed by proline. To address these shortcomings, a readily available and diversifiable substance-class from which improved enamine catalysts could be selected is highly desirable. Here we show for the first time that N-terminal prolyl-peptides efficiently catalyze asymmetric aldol and Michael reactions.

Pioneered by Miller⁹ and Jacobsen¹⁰ catalytic peptides and peptide-like molecules were recently introduced as asymmetric catalysts.¹¹ Their structural and chemical diversity, accessibility, and inherent chirality could make them ideal asymmetric organocatalysts for a variety of reactions. We speculated that the infinite sequence space of *N*-terminal prolyl peptides might be a good source for the discovery of novel enamine catalysts. To test this hypothesis we have studied di- and tripeptide-catalyzed aldol reactions of acetone with *p*-nitrobenzaldehyde. To our delight, we found all tested peptides to show efficient catalytic activity producing the aldol product in good yields (62–90%) and enantioselectivities (31–77%, Table 1). These results are particularly remarkable in light of the observation that catalysis by proline amide is much

Advanced online publication: 19.09.2003 DOI: 10.1055/s-2003-41490; Art ID: Y00103ST

© Georg Thieme Verlag Stuttgart · New York

less efficient than that by proline, and that it provides the product in only 20% ee.

Next, we found the same peptides to also catalyze direct asymmetric Michael reactions between acetone and *trans*- β -nitrostyrene with good results (Table 2). Here, enantioselectivities of up to 31% were observed. Though still modest, these enantioselectivities constitute a significant improvement over the 7% ee realized in the corresponding proline-catalyzed reaction.

Table 1 Peptide-Catalyzed Aldol Reactions

	+ H Cat (30 DMSO, NO ₂	mol %) 18 h (rt)	
Entry	Catalyst	Yield (%) ^a	ee (%) ^b
1	Pro-OH	68	76
2	Pro-Ala	90	70
3	Pro-Trp	77	65
4	Pro-Asp	75	74
5	Pro-Glu	72	68
6	Pro-Val	89	70
7	Pro-Arg	91	31
8	Pro-Ser	87	77
9	Pro-Lys·HCl	62	66
10	Pro-Gly-Gly	68	53
11	Pro-His-Ala	85	56

^a Yields were determined by preparative TLC. As the major side product the aldol condensation product has been identified.

^b Enantiomeric excess (ee) values were determined from chiral stationary-phase HPLC analysis.

In conclusion we show that *N*-terminal prolyl peptides are promising asymmetric aminocatalysts. Although only modest enhancements compared to proline catalysis were realized so far, our results suggest that screening larger libraries of *N*-terminal prolyl peptides could provide effective catalysts with improved enantioselectivities and yields.¹² In addition we expect *N*-terminal prolyl peptides

SYNLETT 2003, No. 12, pp 1901–1902

Table 2 Peptide-Catalyzed Michael Reactions

O ₂ N	Cat of DMS	(30 mol %) (30, 36 h (rt)	NO ₂
Entry	Catalyst	Yield (%) ^a	ee (%) ^b
1	Pro-OH	97	7
2	Pro-Ala	71	5
3	Pro-Trp	68	0
4	Pro-Asp	75	3
5	Pro-Glu	91	8
6	Pro-Val	65	31
7	Pro-Arg	65	19
8	Pro-Ser	81	8
9	Pro-Lys-HCl	66	8
10	Pro-Gly-Gly	79	10
11	Pro-His-Ala	70	7

^a Yields were determined by preparative TLC. No side products have been identified.

^b Enantiomeric excess (ee) values were determined from chiral stationary-phase HPLC analysis.

to become useful catalysts for a variety of other important aminocatalytic transformations.

Acknowledgment

Support by the NIH (GM-63914) is gratefully acknowledged. We thank William T. Biller for technical assistance.

References

 New Address: Max-Plank-Institut f
ür Kohlenforschung, 45470 M
ülheim an der Ruhr, Germany. E-mail: list@mpi-muelheim-mpg.de

- (2) For some recent reviews and highlights, see: (a) Gröger, H.; Wilken, J. Angew. Chem. Int. Ed. 2001, 40, 529. (b) Dalko, P. I.; Moisan, L. Angew. Chem. Int. Ed. 2001, 40, 3726. (c) List, B. Synlett 2001, 1675. (d) Jarvo, E. R.; Miller, S. J. Tetrahedron 2002, 58, 2481. (e) List, B. Tetrahedron 2002, 58, 5572. (f) Borman, S. Chem. Eng. News 2002, 80(50), 35. (g) Movassaghi, M.; Jacobsen, E. N. Science 2003, 298, 1904. (h) Paraskar, A. S. Synlett 2003, 582.
- (3) (a) Hajos, Z. G.; Parrish, D. R. German Patent DE 2102623, 1971. (b) Eder, U.; Sauer, G.; Wiechert, R. German Patent DE 2014757, 1971. (c) Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem., Int. Ed. Engl. 1971, 10, 496. (d) Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39, 1615. (e) Related enantiogroup-differentiating aldol cyclodehydrations have been described, see: Agami, C.; Platzer, N.; Sevestre, H. Bull. Soc. Chim. Fr. 1987, 2, 358.
- (4) For the first proline-catalyzed asymmetric intermolecular aldol, Mannich-, Michael-, and α-amination reactions, see (a) List, B.; Lerner, R. A.; Barbas, C. F. III *J. Am. Chem. Soc.* 2000, *122*, 2395. (b) Notz, W.; List, B. *J. Am. Chem. Soc.* 2000, *122*, 7386. (c) List, B.; Pojarliev, P.; Castello, C. Org. Lett. 2001, *3*, 573. (d) List, B. *J. Am. Chem. Soc.* 2000, *122*, 9336. (e) List, B.; Pojarliev, P.; Biller, W. T.; Martin, H. J. *J. Am. Chem. Soc.* 2002, *124*, 827. (f) List, B.; Pojarliev, P.; Martin, H. J. Org. Lett. 2001, *3*, 2423. (g) List, B. *J. Am. Chem. Soc.* 2002, *124*, 5656.
- (5) (a) Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 6798. (b) Cordova, A.; Watanabe, S.; Tanaka, F.; Notz, W.; Barbas, C. F. III J. Am. Chem. Soc. 2002, 124, 1866. (c) Bøgevig, A.; Kumaragurubaran, N.; Jørgensen, K. A. Chem. Commun. 2002, 620. (d) Bøgevig, A.; Juhl, K.; Kumaragurubaran, N.; Zhuang, W.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2002, 41, 1790. (e) Halland, N.; Aburel, P. S.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2003, 42, 661. (f) Saito, S.; Nakadai, M.; Yamamoto, H. Synlett 2001, 1245.
- (6) For pioneering experiments on enantioselective iminium catalysis, see: Brown, S. P.; Goodwin, N. C.; MacMillan, D. W. C. *J. Am. Chem. Soc.* 2003, *125*, 1192; and references therein.
- (7) Córdova, A.; Notz, W.; Barbas, C. F. III *J. Org. Chem.* **2002**, *67*, 301.
- (8) For the only exception, see: Enders, D.; Seki, A. Synlett 2002, 26.
- (9) Jarvo, E. R.; Copeland, G. T.; Papaioannou, N.; Bonitatebus, P. J. Jr.; Miller, S. J. *J. Am. Chem. Soc.* **1999**, *121*, 11638.
- (10) Sigman, M. S.; Vachal, P.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2000, 39, 1279.
- (11) For the use of peptide-derived ligands in asymmetric transition metal catalysis, also see: Luchaco-Cullis, C. A.; Mizutani, H.; Murphy, K. E.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2001, 40, 1456; and references therein.
- (12) After this manuscript has been accepted for publication, related results were reported by: Kofoed, J.; Nielsen, J.; Reymond, J.-L. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 2445.