

EJ52-1998-475

Journal of the Chinese Chemical Society, 1998, 45, 475-479

475

Invited Paper

Allene-eneyne Related Cycloaromatization: Design and Synthesis of New DNA-cleaving Compounds

Ming-Jung Wu*(吳明忠), Chi-Fong Lin(林志峰), Pao-Tzu Jing(井寶柱), Li-Juan Chang(張麗娟), Tsai-Hui Duh(杜采潓), Fang-Chen Lee(李芳城) and Huey-Ting Chen(陳惠亭) School of Chemistry, Kaohsiung Medical College, Kaohsiung, Taiwan, R.O.C.

(Z)-7-Sulfonyl-3-hexen-1,5-diyne containing molecules are stable at room temperature and isomerized to eneyne-allene-sulfones under alkaline conditions. These eneyne-allene-sulfones were not isolable, spontaneously cyclized to form biradical intermediates under mild conditions, and exhibited good DNA-cleaving and human tumor cell line growth inhibition properties. Further studies indicated that compounds bearing on aromatic ring at C(3) and C(4), such as 25, proved to be more active against those tumor cell lines. Removal of acetylene unit at C(1) and C(2), made the resulting compound less active. A related compound, (Z,Z)-12-(2-tetrahydropyranyl)oxy-1-phenylsulfonyldodeca-4,8-diene-2,6,10-triyne (37), was synthesized. Upon treatment of triethylamine at refluxing benzene, this compound undergoes double cycloaromatization to form a naphalene adduct, which possesses excellent DNA-cleaving activity.

INTRODUCTION

The enediyne antitumor antibiotics, represented by neocarzinostatin,¹ the calicheamicins,² esperimicins,³ and dynemicins,⁴ have attracted much attention due to their unusual molecular architecture and mode of activation leading to the formation of benzenoid diradicals and the resulting cleavage of DNA. The thermal cyclization of (Z)-3-hexen-1,5-diynes to 1,4-didehydrobenzene diradicals reported by Bergman⁵ is considered to be the major mode of formation of biradicals in enediyne antitumor antibiotics. In studies on the mechanism of the DNA-cleaving activity of neocarzinostatin chromophore, Myers reported the cyclization of (Z)-1,2,4-heptatriene-6-ynes to α,3-didehydrotoluene diradicals.⁶ Several potent DNA-cleaving agents have been developed based on Myers cyclization.⁷ For some earlier examples, Myers prepared compound 1.6° Treatment of compound 1 with triethylamine, in the presence of 1,4-cyclohexadienc, in dimethyl sulfoxide gave tetrahydrothiophene 4. The formation of compound 4 suggested the following mechanism: in the presence of triethylamine, compound 1 could undergo intramolecular S_N2' reaction to give the allen-envne 2, which undergoes cycloaromatization reaction to give diradial 3. Hydrogen abstraction would lead 3 to compound 4 (Scheme I). Saito and coworkers^{7c,7d} reported that the thermal decomposition of allenylphosphine oxide 6, which is prepared by the reaction of propargyl alcohol 5 with chlorodiphenylphosphine, actually involves a formation of biradical intermediate 7 (Scheme II). Similar allenylphosphine oxide analogs were reported by Nicolaou.^{7b} Thermolysis of 8 at 37 °C in the presence of 1,4-cyclohexadiene led to a formation of 10. Biradical intermediate 9 was suggested as a intermediate (Scheme III).

Scheme I

Scheme II

Scheme III

In designing of a new class of DNA cleavage agents, we proposed that molecules with (Z)-7-sulfonyl-3-hexene-1,5-diyne functionalities could undergo base-catalyzed isomerization to sulfonyl-allene-enyne II. Structure II was then expected to undergo either Myers cyclization to form biradical III or nucleophilic attack from DNA to form IV and cause the cleavage of DNA as shown in Scheme IV.

Scheme IV

RESULTS AND DISCUSSIONS

The synthesis of the representative compound 11 is outlined in Scheme V.⁸ The commercially available (Z)-1,2dichloroethylene 12 was coupled with propargyl alcohol, using bis(triphenylphosphine)palladium(II) chloride as catalyst to give (Z)-vinyl chloride 13 in 65% yield. Subsequent coupling of 13 with protected propargyl alcohol using tetrakis(triphenylphosphine)palladium(0) as the catalyst under the same conditions gave (Z)-enediyne 14 in 50% yield. Compound 14 was then converted into the corresponding mesylate by the treatment of mesyl chloride in the presence of triethylamine. Subsequent reaction of the mesylate with thiophenol in the presence of sodium hydroxide in aqueous tetrahydrofuran afforded sulfide 15 in 44% yield. Finally, oxidation of sulfide 15 with m-chloroperbenzoic acid provided sulfone 16 in 45% yield along with 32% of compound 11. The protecting group of 16 was removed using camphor sulfonic acid to give 11 in 92% yield.

The degased solution of 16 in benzene (0.01 M) in the presence of 1,4-cyclohexadiene (1.5 M) was treated with Et_3N at 30 °C for 10 h. After extractive isolation and flash

chromatography, the aromatized compound 17 was obtained in 45% yield (Scheme VI). These results strongly suggested that the enyne-allene-sulfone 18 and biradical intermediate 19 are actually involved in the transformation of enediyne 16 to compound 17. On the other hand, the reaction of 16 with methyl 3-mercaptopropionate in the presence of triethylamine in benzene afforded the nucleophilic addition adduct 19 in 53% yield. These results also suggested that enyne-allene-sulfone 18 serves as an excellent Michael acceptor and possibly possess DNA-cleavage and anti-tumor activities.

Scheme VI

According to the above described synthetic procedures, we have also prepared compounds 20, 21, 22, 23, 24 and 25 starting from (Z)-1,2-dichloroethylene, 1,2-diiodobenzene and 2,3-naphthalene bistriflate, respectively.⁹ The incubation of compounds 11, 20, 21, 22, 23, 24 and 25 with supercoiled Φ X 174 DNA (form I) aerobically at pH 8.0 and 37 °C for 14 h produced DNA rupture, leading to form II as shown in Fig. 1. The potencies were increased by the introduction of an aromatic ring at C(3) and C(4). Compounds 11, 20, 21, 22, 23, 24 and 25 were evaluated in vitro against five human tumor cell lines (Colo 205, Hep G2, SK-

Table 1. Inhibition of *in vitro* Human Tumor Cell^a Growth by 11 and 20-25 $(IC_{50}, \mu g/mL)^b$

Compound	HepG2	Colo 205	SK-BR-3	KB	Molt-4
11		+		+	
20		+	+	+	
21		+	+	+	
22		+	+	+	
23	4	++	++	++	++
24	++				
25	+	+	+		++

^a Cell type: HepG2, larynx epidermoid cell line; Colo 205, colon cell linc; SK-BR-3, melanoma cell line; KB, oral epidermoid cell line; Molt-4, leukemia cell line. ^b Relative potency of growth inhibition of cancer cell line was graded by concentration required for 50% inhibition: ++ (IC₅₀: <4 μ g/mL), + (IC₅₀: 4-10 μ g/mL), --- (IC₅₀: > 10 μ g/mL).

BR-3, KB and Molt-4). For each compound, dose-response curves for each cell line were measured with five different drug concentrations and the concentration causing 50% cell growth inhibition (IC_{50}) compared with the control was calculated. The results were summarized in Table 1. Again, compounds 23, 24 and 25 bearing on aromatic ring at C(3) and C(4) proved to be active against these cell lines.

In order to have a better understanding of the mode of biological actions of this series of compounds caused either by alkylation prosess or via biradical intermediate, we have synthesized compound **26** by removing the 1,2-acetylene unit and compound **27** containing bis-propargyl sulfone moiety.¹⁰ The synthesis of **26** is outlined in Scheme VII. Hydrogenation of **28** using palladium on charcol as catalyst afforded **29** in 31% yield. Protection of the hydroxyl group with 3,4-dihydro-2H-pyrane under acidic condition gave **30** in 41% yield. Palladium catalyzed coupling reaction of triflate **30** with propargyl alcohol gave **31** in 35% yield. Alco-

Fig. 1. DNA cleavage patterns on 1% agarose (ethidium bromide stain) of ΦX 174 (RF1) DNA (100 μM per base pair) incubated at 37 °C, 14 h at pH 8.0, 50 mM Tri-HCl, and the following additions. Lane 1. DNA plasmid as received; Lane 2. 50 μM 11; Lane 3. 50 μM 20; Lane 4. 50 μM 21; Lane 5. 50 μM 22; Lane 6. 50 μM 23; Lane 7. 50 μM 24; Lane 8. 50 μM 25.

Scheme VII

hol 31 was converted to sulfide 32 in 24% yield by the reaction of alcohol 31 with methanesulfonyl chloride to give the corresponding mesylate, followed by the reaction of mesylate with thiophenol under alkaline condition. Oxidation of sulfide 32 with mCPBA gave sulfone 33 in 46% yield. Finally, acid-catalyzed deprotection of 33 gave 26 in 80% yield.

Compound 27 was prepared starting from 2,3-napthalene-bistriflate 34. Palladium-catalyzed coupling reaction of 34 with four equivalents of propargyl alcohol gave the bispropargyl alcohol 35 in 52% yield. Compound 35 was then converted to the corresponding sulfide 36 in 39% yield by the standard procedure. Finally, oxidation of 36 with mCPBA gave 27 in 43% yield (Scheme VIII).

Scheme VIII

Compounds 25, 26 and 27 were evaluated in vitro against tumor cell lines (Colo 205, HepG2, HA22T, SK-BR-3 and Molt-4). The results were summarized in Table 2. Compound 26 lacking the 1,2-acetylene unit shows about ten times lower inhibition activity than compound 25. Bispropargyl sulfone analog 27 bearing with enediyne moiety shows about equal activity to compound 25.

Since the enyne-allene-sulfones undergo spontaneous cyclization to form biradical intermediates under mild conditions and exhibit good DNA-cleaving activity, we have extended our research in this area to thermal double cyclization of (Z,Z)-11-sulfonylundeca-3,7-diene-1,5,9-triyne system.¹¹ The synthesis of the prototype diene-triyne **37** is outlined in Scheme IX. Palladium-catalyzed coupling of *cis*-1,2-dichloroethylene **12** with protected propargyl alcohol **38** afforded **39** in 45% yield. Enyne **39** was subsequently coupled with (trimethylsilyl)acetylene using tetrakis-

Compound	Colo 205	HepG2	HA22T	SK-BR-3	Molt-4	
15	5.63	5.40		7.18	0.78	
22	57.32		65.91	70.00	9.45	
25	8.44		4.62	5.39	1.96	

Table 2. Inhibition of *in vitro* Human Tumor Cell Growth by 25, 26 and 27 (IC₅₀, µg/mL)^a

^a Relative potency of growth inhibition of cancer cell line was graded by concentration required for 50% inhibition.

(triphenylphosphine)palladium(0) as the catalyst to give 40 in 70% yield. The silyl group of 40 was removed with tetrabutylammonium fluoride in THF to afford 41 in 65% yield. Coupling of (Z)-vinyl chloride 13 with 41 gave 42 in 23% yield. The hydroxyl group of 42 was converted to sulfide 43 in 45% yield by the standard procedures. Finally, sulfide 43 was oxidized with *m*CPBA to furnish sulfone 37 in 58% yield.

Scheme IX

Thermolysis of 37 with triethylamine (4 equiv.) in diluted, degassed benzene solution (0.01 M, 80 °C, 12 h) containing 1,4-cyclohexadiene (1.5 M) afforded 44 in 18%

Fig. 2. Results of DNA cleavage by 37. ΦX 174 Form I DNA (50 mM/bp) was incubated for 48 h at 47 °C with 37 in TBE buffer solution (pH 8.3) containing 20% DMSO and analyzed by electrophorisis (1% agarose gel, ethidium bromide stain). Lane 1. DNA control without incubation; Lane 2. DNA control with incubation. Lane 3-6. DNA with 1, 10, 100 and 500 µM of 37, respectively.

yield. The isolation of naphthalene 44 strongly suggested that the diradical, α ,6-didehydro- α -methylnaphthalene 47, is formed either by the concerted cyclization of allenyl sulfone 45 or by a stepwise pathway through diradical 46 (Scheme X).

Scheme X

The DNA cleaving activity of **37** was examined by incubation with supercoiled ΦX 174 DNA (form I) at pH 8.3 and 47 °C for 48 h. The agarose gel picture shown in Fig. 2 indicated that the proportion of single stranded cleavage product (Form II) increased with increasing amount of **37**. At concentration of 100 μ M (lane 5), more than 90% of form I DNA was converted into form II.

In conclusion, molecules with (Z)-7-sulfonyl-3hexen-1,5-diyne functionalities proceeded base-catalyzed conversion to (Z)-enyne-allene-sulfones and subsequent Myers cyclization to form aromatized products under mild conditions. Most of these molecules show good DNAcleaving properties and inhibition activity of the growth of tumor cell lines. These results might provide an opportunity for the development of a new class of DNA-cleaving antitumor agents.

ACKNOWLEDGMENT

We thank the National Science Council of the Republic of China for generous support of this program.

Received February 7, 1998.

Key Words

(Z)-7-Sulfonyl-3-hexen-1,5-diyne; Encyne-allenesulfone; DNA-cleavage; Antitumor antibiotics.

REFERENCES

- 1. For a review of neocarzinostatin, see: Goldberg, I. H. Acc. Chem. Res. 1991, 24, 191.
- For a review of calicheamicins, see: Lee, M. D.; Ellested, G. A.; Borders, D. B. Acc. Chem. Res. 1991, 24, 235.
- (a) Konishi, M.; Ohkuma, H.; Saitoh, K.; Kawaguchi, H.; Golik, J.; Dubay, G.; Groenewold, G.; Krishnen, B.; Doyle, T. W. J. Antibiot. 1985, 38, 1605. (b) Golik, J.; Clardy, J.; Dubay, G.; Groenewold, G.; Kawaguchi, H.; Konishi, M.; Krishnan, B.; Ohkuma, H.; Saitoh, K.; Doyle, T. W. J. Am. Chem. Soc. 1987, 109, 3461. (c) Golik, J.; Dubay, G.; Groenewold, G.; Kawaguchi, H.; Konishi, M.; Krishnan, B.; Ohkuma, H.; Saitoh, K.; Doyle, T. W. J. Am. Chem. Soc. 1987, 109, 3462.
- Konishi, M.; Ohkuma, H.; Matsumoto, K.; Tsuno, T.; Kamei, H.; Miyaki, T.; Oki, T.; Kawaguchi, H.; Van-Duyne, G. D.; Clardy, J. J. Antibiot. 1989, 42, 1449.
- 5. Jones, R. R.; Bergman, R. G. J. Am. Chem. Soc. 1972, 94, 660.
- (a) Myers, A. G.; Dragovich, P. S. J. Am. Chem. Soc. 1989, 111, 9130.
 (b) Myers, A. G.; Kuo, E. Y.; Finney, N. S. J. Am. Chem. Soc. 1989, 111, 8057.
 (c) Myers, A.

G.; Dragovich, P. S.; Kuo, E. Y. J. Am. Chem. Soc. 1992, 114, 9369.

- (a) Toshima, K.; Kazumi, O.; Ohashi, A.; Nakamura, T.; Nakata, M.; Tatsuta, K.; Matsumura, J. J. Am. Chem. Soc. 1995, 117, 4822. (b) Nicolaou, K. C.; Maligres, P.; Shin, J.; de Leon, E.; Rideout, D. J. Am. Chem. Soc. 1990, 112, 7825. (c) Saito, I.; Nagata, H.; Yamanaka, H.; Okazaki, E. Tetrahedron Lett. 1989, 30, 4995. (d) Saito, I.; Nagata, R.; Yamanaka, H.; Murahashi, E. Tetrahedron Lett. 1990, 31, 2907. (e) Shibuya, M.; Sakai, Y.; Bando, Y.; Shishido, K. Tetrahedron Lett. 1992, 33, 957. (f) Morokuma, M.; Koga, N. J. Am. Chem. Soc. 1991, 113, 1907. (g) Fujiwara, K.; Sakai, H.; Hirama, M. J. Org. Chem. 1991, 56, 1688. (h) Dai, W.-M.; Fong, K. C.; Danjo, H.; Nishimoto, S.-i Angew. Chem., Int. Ed. Engl. 1996, 35, 779.
- Wu, M.-J.; Lin, C.-F.; Wu, J.-S.; Chen, H.-T. Tetrahedron Lett. 1994, 35, 1879.
- Wu, M.-J.; Lin, C.-F.; Ong, C.-W. Bioorg. Med. Chem. Lett. 1996, 6, 675.
- 10. Wu, M.-J. unpublished work.
- 11. Lin, C.-F.; Wu, M.-J. J. Org. Chem. 1997, 62, 4546.