Synthesis and aldose reductase inhibitory activity of acetic acid derivatives of pyrrolo[1,2-c]imidazole

I Yamawaki, Y Matsushita, N Asaka, K Ohmori, N Nomura, K Ogawa

Research Laboratory, Taiho Pharmaceutical Co Ltd, Kawauchi-cho, Tokushima 771-01, Japan (Received 24 July 1992; accepted 11 January 1993)

Summary — Various acetic acid derivatives of pyrrolo[1,2-c]imidazole were prepared and evaluated for aldose reductase inhibitory activity. Most of the compounds inhibited aldose reductase isolated from rat lens *in vitro* and decreased sorbitol formation in sciatic nerves of diabetic rats *in vivo*. Of the test compounds, 2-carboxymethyl-6-ethyl-5,7-dimethyl-3-oxo-1(2H)-thioxo-1H-pyrrolo[1,2-c] imidazole 124 was found to be the most orally active aldose reductase inhibitor, with an inhibitory potency similar to that of AD-5467.

aldose reductase inhibitor / pyrrolo[1,2-c]imidazole derivatives / sorbitol accumulation inhibition

Introduction

A wide variety of compounds have been reported as aldose reductase inhibitors (ARIs) and are considered to offer therapeutic possibilities in the treatment of chronic complications in diabetes, such as retinopathy, neur-opathy, nephropathy and cataracts [1–3]. Active compounds of ARIs *in vivo* are limited, for the most part, to distinct structural classes, *ie*, acetic acid derivatives (*eg*, tolrestat, epalrestat, ponalrestat, AD-5467) and cyclic imide derivatives (*eg*, sorbinil, M-79175, CT-112).

In order to search for new ARIs, we have focused on the synthesis and the biological activity of compounds with an acetic acid moiety because sorbinil with a cyclic imide moiety showed a low incidence of side effects due to hypersensitivity [4, 5]. We found that acetic acid derivatives of pyrrolo[1,2-c] imidazole showed inhibitory activity for AR.

In this article, we report on the synthesis and biological results of acetic acid derivatives of pyrrolo[1,2-c]imidazole. We found in this study that 2-carboxymethyl-6-ethyl-5,7-dimethyl-3-oxo-1(2H)-thioxo-1H-pyrrolo[1,2-c]imidazole **124** represents a very

potent orally active ARI. Its potency was similar to that of AD-5467, a carboxylic acid type ARI under clinical evaluation.

Chemistry

Derivatives of 2-carboxymethyl-1,3(2H)-dioxo-1Hpyrrolo[1,2-c]imidazole 7 were prepared as outlined in scheme 1. First, compounds 1 were treated with acyl halide in the presence of aluminium chloride according to the method of Murakami et al [6] to afford compounds 2. The compounds 2 were treated with triethylsilane in trifluoroacetic acid according to the method of West et al [7] to give compounds 3. Compounds 3 were hydrolyzed under alkaline conditions followed by amidation with glycine ethyl ester, diethyl cyanophosphonate and triethylamine according to the method of Yamada et al [8], to yield amide derivatives 5. Finally, compounds 7 were prepared from esters 6, obtained by cyclization of compounds 5 with 1,1'-carbonyldiimidazole, followed by acidic hydrolysis with concentrated HCl in acetic acid.

Derivatives of 2-carboxymethyl-3-oxo-1(2H)-thioxo-1H-pyrrolo[1,2-c]imidazole **9** and derivatives of

2-carboxymethyl-1,3(2H)-dithioxo-1H-pyrrolo[1,2-c] imidazole 11 were obtained by following the procedure in scheme 2. Treatment of compounds 6 with phosphorus pentasulfide, according to the method of Papadopoulos [9], afforded compounds 8 and 10. Acid hydrolysis of 8 and 10 gave compounds 9 and 11, respectively. These compounds are listed in tables I and II.

Results and discussion

The test compounds were evaluated for their *in vitro* inhibitory activity against aldose reductase iso-lated from rat lens and for their ability to inhibit sorbitol formation in the sciatic nerve of a streptozotocinized rat model after oral administration. These biological data are summarized in tables I and III.

Introduction of a lipophilic alkyl group to the 6-position of the 5,7-unsubstituted pyrroloimidazole ring enhanced *in vitro* activity (compare 78 with 79 – 81; table I). Introduction of substituted benzyl groups to the 6-position enhanced *in vitro* activity, but the trifluoromethylbenzyl and *tert*-butylbenzyl groups

showed slightly less activity than other benzyl groups **78** with 82–87). Monothiocarbonyl compounds with alkyl groups at the 6-position were corresponding dicarbonyl potent than compounds (compare 78 with 112, 79 with 113 and 80 with 114; table I) and an increase in lipophilicity of the alkyl group at the 6-position enhanced activity (compare 112 with 113-115; table I) as dicarbonyl, mono- and dithiocarbonyl 5,7-unsubstituted compounds. Although monothiocarbonyl compounds showed roughly the same activity as dithiocarbonyl compounds (compare 113 with 141 and 114 with 142; table I), only compound 140 showed more activity than the corresponding monothiocarbonyl compound 112. Changing the dicarbonyl compounds to the respective monothiocarbonyls (compare 83 with 117; table III) and the monothiocarbonyls to their respective dithiocarbonyls (compare 114 with 142 and 120 with 148; table III) increased activity at 100 x 2 (mg/kg/d), but the most active compound 148 among tested 5,7-unsubstituted compounds had significantly less activity in vivo at 50 x 2 (mg/kg/d) than at 100 x 2 (mg/kg/d) (148, table III).

Scheme 1.

In 5- and 7-methyl substituted compounds, introduction of a lipophilic alkyl group at the 6-position did not enhance in vitro activity (89-92; table I), but substituted benzyl groups at the 6-position showed an increase in *in vitro* activity (compare 88 with 93 and 94). Change of a carbonyl group for the thiocarbonyl group showed enhancement in in vitro potency (compare 88 with 122, 89 with 123, 90 with 124, 91 with 125, 92 with 126 and 93 with 127; table I). However, the high *in vitro* activities observed for 5,7dimethyl compounds were not accompanied by equally high activities in vivo as 5,7-unsubstituted compounds. Among tested dimethyl compounds, 2-carboxymethyl-6-ethyl-5,7-dimethyl-3-oxo-1(2H)thioxo-1H-pyrrolo[1,2-c]imidazole (124; table III), with moderate in vitro activity (IC₅₀ 2.3 x 10⁻⁷ M; table I), showed the most potent in vivo activity at 50 x 2 (mg/kg/d), which was almost the same as that of AD-5467 used as a reference compound. Change in

Scheme 2.

the lipophilicity of the alkyl substituent, or replacement by the 4-fluorobenzyl or 4-bromo-2-fluorobenzyl group at the 6-position, did not improve *in vivo* activity (compare **124** with **123**, **125** and **126**, **124** with **127** and **128**; table III).

The above *in vitro* data demonstrate that introduction of a lipophilic alkyl group or a substituted benzyl group at the 6-position and/or changing from a dicarbonyl compound to the monothiocarbonyl or dithiocarbonyl compound increase *in vitro* activity, although in some cases the change in activity is relatively small.

On the other hand, the high *in vitro* activities observed for 5,7-unsubstituted and 5,7-dimethyl compounds were not accompanied by equally high activities *in vivo*. Compound **124** having moderate *in vitro* activity among tested compounds showed the most potent activity *in vivo*. A possible explanation for this might be that the replacement by a methyl group at the 5- and 7-positions and introduction of a substituent possessing appropriate lipophilicity at the 6-position of the pyrroloimidazole ring may be effective in improving the intestinal absorption, metabolism and distribution to the target tissue, but data to this effect has not yet been collected.

This study has revealed that 2-carboxymethyl-6-ethyl-5,7-dimethyl-3-oxo-1(2*H*)-thioxo-1*H*-pyrrolo-[1,2-*c*]imidazole **124** is a very potent, orally active ARI and has activity similar to that of AD-5467, a carboxylic acid type ARI under clinical evaluation.

Experimental protocols

Melting points were determined on a Yanagimoto micromelting point apparatus and are uncorrected. ¹H-NMR spectra were determined in the cited solvent on a JEOL JMN-FX100 (100 MHz) spectrometer with tetramethylsilane as internal

Table I. Physical and biological data for acetic acid derivatives of pyrrolo[1,2-c]imidazole.

80 (CH ₃) ₂ CHCH ₂ 183.5-184 A 86 9 81 cyclohe ₃ C ₉ H ₄ CH ₂ 166-167 A 85 6 83 4-Cl-C ₆ H ₄ CH ₂ 220-222 A 88 6 84 4-CF ₃ -C ₆ H ₄ CH ₂ 184-185 A 98 13 85 4-Br,2-F-C ₆ H ₃ CH ₂ 197.5-199 A 87 2 86 3,4-(Cl) ₂ C ₆ H ₄ CH ₂ 197-199 B 58 4 87 4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂ 179-180 A 86 12 R ₁ =R ₂ =CH ₃ ; X=Y=O 88 H 208-209 A 91 >100 89 CH ₃ 225-227 A 76 170 90 C ₂ H ₅ 190.5-192 C 86 170 91 CH ₃ CH ₂ CH ₂ 185-186 A 95 460 92 (CH ₃) ₂ CHCH ₂ 170.5-171 A 90 170 R ₁ =R ₂ =CH ₃ ; X=Y=O 93 4-F-C ₆ H ₄ CH ₂ 210-210.5 A 92 50 94 4-Br,2-F-C ₆ H ₃ CH ₂ 205-207 A 97 6 R ₁ =R ₂ =H; X=O, Y=S 112 H 203-204 A 81 37 113 (CH ₃) ₂ CHCH ₂ 179-180 B 83 42 115 cycloheysimethyl 157-158 B 78 3 116 4-CH ₃ -C ₆ H ₄ CH ₂ 200.5-201.5 B 72 2 117 4-Cl-C ₆ H ₄ CH ₂ 197-198 A 93 5 119 4-Br,2-F-C ₆ H ₃ CH ₂ 122-222 A 88 2 120 3,4-(Cl) ₂ -C ₆ H ₃ CH ₂ 165-167.5 A 92 3 121 4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂ 174-176 A 96 7 R ₁ =R ₂ =CH ₃ ; X=O, Y=S 122 H 226-227 A 65 100	Compo	d R ₄	mp (°C)	Recryst	Yield (%)	In vitro IC ₅₀ x10 ⁻⁸ M
79 (CH ₃) ₂ CH 155-156 A 62 75 80 (CH ₃) ₂ CHCH ₂ 183.5-184 A 87 31 81 cyclohexylmethyl 182-184 A 86 9 82 4-CH ₃ -C ₆ H ₄ CH ₂ 166-167 A 85 6 83 4-Cl-C ₆ H ₄ CH ₂ 220-222 A 88 6 84 4-CF ₃ -C ₆ H ₄ CH ₂ 184-185 A 98 13 85 4-Br ₁ -2-F-C ₆ H ₃ CH ₂ 197.5-199 A 87 2 86 3,4-(Cl) ₂ C ₆ H ₃ CH ₂ 197-199 B 58 4 87 4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂ 179-180 A 86 12 R ₁ =R ₂ =CH ₃ ; X=Y=O 88 H 208-209 A 91 >100 89 CH ₃ 225-227 A 76 170 90 C ₂ H ₅ 190.5-192 C 86 170 91 CH ₃ CH ₂ CH ₂ 185-186 A 95 460 92 (CH ₃) ₂ CHCH ₂ 170.5-171 A 90 170 R ₁ =R ₂ =CH ₃ ; X=Y=O 93 4-F-C ₆ H ₄ CH ₂ 210-210.5 A 92 50 94 4-Br ₁ -2-F-C ₆ H ₆ CH ₂ 205-207 A 97 6 R ₁ =R ₂ =H; X=O, Y=S 112 H 203-204 A 81 37 113 (CH ₃) ₂ CH 176-178 A 97 15 114 (CH ₃) ₂ CHCH ₂ 179-180 B 83 44 115 cyclohexylmethyl 157-158 B 78 3 116 4-CH ₃ -C ₆ H ₄ CH ₂ 200-5-201.5 B 72 2 117 4-Cl-C ₆ H ₄ CH ₂ 200-5-201.5 B 72 2 118 4-CF ₃ -C ₆ H ₄ CH ₂ 197-198 A 93 5 119 4-Br ₁ -2-F-C ₆ H ₃ CH ₂ 197-198 A 93 5 119 4-Br ₁ -2-F-C ₆ H ₃ CH ₂ 197-198 A 93 5 120 3,4-(Cl) ₂ -C ₆ H ₄ CH ₂ 197-198 A 93 5 121 4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂ 174-176 A 96 7 R ₁ =R ₂ -CH ₃ ; X=O, Y=S 121 H 226-227 A 65 100	R ₁ =R ₂ =	=H ; X=Y=O				
80 (CH ₃) ₂ CHCH ₂ 183.5-184 A 87 31 81 cyclohexylmethyl 182-184 A 86 9 82 4-CH ₃ -C ₆ H ₄ CH ₂ 166-167 A 85 6 83 4-Cl-C ₆ H ₄ CH ₂ 220-222 A 88 6 84 4-CF ₃ -C ₆ H ₄ CH ₂ 184-185 A 98 13 85 4-Br,2-F-C ₆ H ₃ CH ₂ 197.5-199 A 87 2 86 3,4-(Cl) ₂ C ₆ H ₃ CH ₂ 197-199 B 58 4 87 4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂ 179-180 A 86 12 R ₁ =R ₂ =CH ₃ ; X=Y=O 88 H 208-209 A 91 >100 89 CH ₃ 225-227 A 76 170 90 C ₂ H ₅ 190.5-192 C 86 170 91 CH ₃ CH ₂ CH ₂ 185-186 A 95 460 92 (CH ₃) ₂ CHCH ₂ 170.5-171 A 90 170 R ₁ =R ₂ =CH ₃ ; X=Y=O 93 4-F-C ₆ H ₄ CH ₂ 210-210.5 A 92 50 94 4-Br,2-F-C ₆ H ₃ CH ₂ 205-207 A 97 6 R ₁ =R ₂ =H; X=O, Y=S 112 H 203-204 A 81 37 113 (CH ₃) ₂ CHCH ₂ 179-180 B 83 44 115 cyclohexylmethyl 157-158 B 78 3 116 4-CH ₃ -C ₆ H ₄ CH ₂ 200.5-201.5 B 72 2 117 4-Cl-C ₆ H ₄ CH ₂ 197-198 A 93 5 119 4-Br,2-F-C ₆ H ₃ CH ₂ 124-225 A 88 2 120 3,4-(Cl) ₂ -C ₆ H ₃ CH ₂ 165-167.5 A 92 3 121 4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂ 174-176 A 96 7 R ₁ =R ₂ =CH ₃ ; X=O, Y=S 122 H 226-227 A 65 100	78	Н	161-163	,. A	42	>100
81 cyclohexylmethyl 182-184 A 86 9 82 4-CH ₃ -C ₆ H ₄ CH ₂ 166-167 A 85 6 83 4-Cl-C ₆ H ₄ CH ₂ 220-222 A 88 6 84 4-CF ₃ -C ₆ H ₃ CH ₂ 184-185 A 98 13 85 4-Br,2-F-C ₆ H ₃ CH ₂ 197-5-199 A 87 2 86 3,4-(Cl) ₂ C ₆ H ₃ CH ₂ 197-199 B 58 4 87 4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂ 179-180 A 86 12 R ₁ =R ₂ =CH ₃ ; X=Y=O 88 H 208-209 A 91 >100 89 CH ₃ 225-227 A 76 170 90 C ₂ H ₅ 190.5-192 C 86 170 91 CH ₃ CH ₂ CH ₂ 185-186 A 95 460 92 (CH ₃) ₂ CHCH ₂ 170.5-171 A 90 170 R ₁ =R ₂ =CH ₃ ; X=Y=O 93 4-F-C ₆ H ₄ CH ₂ 210-210.5 A 92 50 94 4-Br,2-F-C ₆ H ₃ CH ₂ 205-207 A 97 6 R ₁ =R ₂ =H; X=O, Y=S 112 H 203-204 A 81 37 113 (CH ₃) ₂ CH CH ₂ 179-180 B 83 4 115 cyclohexylmethyl 157-158 B 78 3 116 4-CH ₃ -C ₆ H ₄ CH ₂ 200.5-201.5 B 72 2 117 4-Cl-C ₆ H ₄ CH ₂ 220-222 A 98 6 119 4-Br,2-F-C ₆ H ₄ CH ₂ 220-222 A 88 2 119 4-Br,2-F-C ₆ H ₄ CH ₂ 197-198 A 93 5 119 4-Br,2-F-C ₆ H ₄ CH ₂ 120-210.5 A 92 3 121 4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂ 174-176 A 96 7 R ₁ =R ₂ =CH ₃ ; X=O, Y=S 122 H 226-227 A 65 100	79	(CH₃)₂CH	155-156	Α	62	75
82 4-CH ₃ ·C ₆ H ₄ CH ₂ 166-167 A 85 6 83 4-Cl-C ₆ H ₄ CH ₂ 220-222 A 88 6 84 4-CF ₃ ·C ₆ H ₄ CH ₂ 184-185 A 98 13 85 4-Br ₂ ·C-F-C ₆ H ₃ CH ₂ 197-5-199 A 87 2 86 3,4-(Cl) ₂ C ₆ H ₃ CH ₂ 197-199 B 58 4 87 4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂ 179-180 A 86 12 R ₁ =R ₂ -CH ₃ ; X=Y=O 88 H 208-209 A 91 >100 89 CH ₃ 225-227 A 76 170 90 C ₂ H ₅ 190.5-192 C 86 170 91 CH ₃ CH ₂ CH ₂ 185-186 A 95 460 92 (CH ₃) ₂ CHCH ₂ 170.5-171 A 90 170 R ₁ =R ₂ -CH ₃ ; X=Y=O 93 4-F-C ₆ H ₄ CH ₂ 210-210.5 A 92 50 94 4-Br ₂ -F-C ₆ H ₃ CH ₂ 205-207 A 97 6 R ₁ =R ₂ -H; X=O, Y=S 112 H 203-204 A 81 37 113 (CH ₃) ₂ CH CH ₂ 179-180 B 83 4 115 cyclohexylmethyl 157-158 B 78 3 116 4-CH ₃ ·C ₆ H ₄ CH ₂ 200.5-201.5 B 72 2 117 4-Cl-C ₆ H ₄ CH ₂ 220-222 A 98 6 119 4-Br ₂ -F-C ₆ H ₃ CH ₂ 220-222 A 88 2 119 4-Br ₂ -F-C ₆ H ₃ CH ₂ 197-198 A 93 5 119 4-Br ₂ -F-C ₆ H ₃ CH ₂ 122-10-176 A 92 3 121 4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂ 174-176 A 96 7 R ₁ =R ₂ -CH ₃ ; X=O, Y=S 122 H 226-227 A 65 100	80	(CH ₃) ₂ CHCH ₂	183.5-184	Α	87	31
83 4-Cl-C ₆ H ₄ CH ₂ 220-222 A 88 66 84 4-CF ₃ -C ₆ H ₄ CH ₂ 184-185 A 98 13 85 4-Br,2-F-C ₆ H ₃ CH ₂ 197-5-199 A 87 2 86 3,4-(Cl) ₂ C ₆ H ₅ CH ₂ 197-199 B 58 4 87 4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂ 179-180 A 86 12 R ₁ =R ₂ =CH ₃ ; X=Y=O 88 H 208-209 A 91 >100 89 CH ₃ 225-227 A 76 170 90 C ₂ H ₅ 190.5-192 C 86 170 91 CH ₃ CH ₂ CH ₂ 185-186 A 95 460 92 (CH ₃) ₂ CHCH ₂ 170.5-171 A 90 170 R ₁ =R ₂ =CH ₃ ; X=Y=O 93 4-F-C ₆ H ₄ CH ₂ 210-210.5 A 92 50 94 4-Br,2-F-C ₆ H ₃ CH ₂ 205-207 A 97 6 R ₁ =R ₂ =H; X=O, Y=S 112 H 203-204 A 81 37 113 (CH ₃) ₂ CH 176-178 A 97 15 114 (CH ₃) ₂ CHCH ₂ 179-180 B 83 4 115 cyclohexylmethyl 157-158 B 78 3 116 4-CH ₃ -C ₆ H ₄ CH ₂ 200.5-201.5 B 72 2 117 4-Cl-C ₆ H ₄ CH ₂ 220-222 A 98 6 118 4-CF ₃ -C ₆ H ₄ CH ₂ 197-198 A 93 5 119 4-Br,2-F-C ₆ H ₃ CH ₂ 197-198 A 93 5 119 4-Br,2-F-C ₆ H ₃ CH ₂ 197-198 A 93 5 119 4-Br,2-F-C ₆ H ₃ CH ₂ 197-198 A 93 5 119 4-Br,2-F-C ₆ H ₃ CH ₂ 197-198 A 93 5 119 4-Br,2-F-C ₆ H ₃ CH ₂ 197-198 A 93 5 119 4-Br,2-F-C ₆ H ₃ CH ₂ 197-198 A 93 5 119 4-Br,2-F-C ₆ H ₃ CH ₂ 197-198 A 93 5 119 4-Br,2-F-C ₆ H ₃ CH ₂ 197-198 A 93 5 119 4-Br,2-F-C ₆ H ₃ CH ₂ 197-198 A 93 5 119 4-Br,2-F-C ₆ H ₃ CH ₂ 197-198 A 93 5 119 4-Br,2-F-C ₆ H ₃ CH ₂ 197-198 A 93 7 121 4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂ 174-176 A 96 7 R ₁ =R ₂ =CH ₃ ; X=O, Y=S 122 H 226-227 A 65 100	81	cyclohexylmethyl	182-184	Α	86	9.8
84 4-CF ₃ -C ₆ H ₄ CH ₂ 184-185 A 98 13 85 4-Br ₁ -2-F-C ₆ H ₃ CH ₂ 197-5-199 A 87 2 86 3,4-(Cl) ₂ C ₆ H ₃ CH ₂ 197-199 B 58 4 87 4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂ 179-180 A 86 12 R ₁ =R ₂ =CH ₃ ; X=Y=O 88 H 208-209 A 91 >100 89 CH ₃ 225-227 A 76 170 90 C ₂ H ₅ 190.5-192 C 86 170 91 CH ₃ CH ₂ CH ₂ 185-186 A 95 460 92 (CH ₃) ₂ CHCH ₂ 170.5-171 A 90 170 R ₁ =R ₂ =CH ₃ ; X=Y=O 93 4-F-C ₆ H ₄ CH ₂ 210-210.5 A 92 50 94 4-Br ₁ 2-F-C ₆ H ₃ CH ₂ 205-207 A 97 6 R ₁ =R ₂ =H; X=O, Y=S 112 H 203-204 A 81 37 113 (CH ₃) ₂ CH 176-178 A 97 15 114 (CH ₃) ₂ CHCH ₂ 179-180 B 83 14 (CH ₃) ₂ CHCH ₂ 179-180 B 83 115 cyclohexylmethyl 157-158 B 78 116 4-CH ₃ -C ₆ H ₄ CH ₂ 200.5-201.5 B 72 117 4-Cl-C ₆ H ₄ CH ₂ 220-222 A 98 6 118 4-CF ₃ -C ₆ H ₄ CH ₂ 197-198 A 93 119 4-Br ₁ -2-F-C ₆ H ₃ CH ₂ 197-198 A 93 119 4-Br ₂ -F-C ₆ H ₃ CH ₂ 197-198 A 93 119 4-Br ₂ -F-C ₆ H ₃ CH ₂ 165-167.5 A 92 121 4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂ 174-176 A 96 7 R ₁ =R ₂ =CH ₃ ; X=O, Y=S	82	4-CH ₃ -C ₆ H ₄ CH ₂	166-167	Α	85	6.8
85 4-Br,2-F-C ₆ H ₃ CH ₂ 197.5-199 A 87 2 86 3,4-(Cl) ₂ C ₆ H ₃ CH ₂ 197-199 B 58 4 87 4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂ 179-180 A 86 12 R ₁ =R ₂ =CH ₃ ; X=Y=O 88 H 208-209 A 91 >100 89 CH ₃ 225-227 A 76 170 90 C ₂ H ₅ 190.5-192 C 86 170 91 CH ₃ CH ₂ CH ₂ 185-186 A 95 460 92 (CH ₃) ₂ CHCH ₂ 170.5-171 A 90 170 R ₁ =R ₂ =CH ₃ ; X=Y=O 93 4-F-C ₆ H ₄ CH ₂ 210-210.5 A 92 50 94 4-Br,2-F-C ₆ H ₃ CH ₂ 205-207 A 97 6 R ₁ =R ₂ =H; X=O, Y=S 112 H 203-204 A 81 37 113 (CH ₃) ₂ CHCH ₂ 179-180 B 83 4 115 cyclohexylmethyl 157-158 B 78 3 116 4-CH ₃ -C ₆ H ₄ CH ₂ 200.5-201.5 B 72 2 117 4-Cl-C ₆ H ₄ CH ₂ 220-222 A 98 6 118 4-CF ₃ -C ₆ H ₄ CH ₂ 197-198 A 93 5 119 4-Br,2-F-C ₆ H ₃ CH ₂ 165-167.5 A 92 3 120 3,4-(Cl) ₂ -C ₆ H ₄ CH ₂ 174-176 A 96 7 R ₁ =R ₂ =CH ₃ ; X=O, Y=S	83	4-CI-C ₆ H ₄ CH ₂	220-222	Α	88	6.3
86 3,4-(Cl) ₂ C ₆ H ₃ CH ₂ 197-199 B 58 4 87 4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂ 179-180 A 86 12 R ₁ =R ₂ =CH ₃ ; X=Y=O 88 H 208-209 A 91 >100 89 CH ₃ 225-227 A 76 170 90 C ₂ H ₅ 190.5-192 C 86 170 91 CH ₃ CH ₂ CH ₂ 185-186 A 95 460 92 (CH ₃) ₂ CHCH ₂ 170.5-171 A 90 170 R ₁ =R ₂ =CH ₃ ; X=Y=O 93 4-F-C ₆ H ₄ CH ₂ 210-210.5 A 92 50 94 4-Br,2-F-C ₆ H ₃ CH ₂ 205-207 A 97 6 R ₁ =R ₂ =H; X=O, Y=S 112 H 203-204 A 81 37 113 (CH ₃) ₂ CH 176-178 A 97 15 114 (CH ₃) ₂ CHCH ₂ 179-180 B 83 4 115 cyclohexylmethyl 157-158 B 78 3 116 4-CH ₃ -C ₆ H ₄ CH ₂ 200.5-201.5 B 72 2 117 4-Cl-C ₆ H ₄ CH ₂ 220-222 A 98 6 118 4-CF ₃ -C ₆ H ₄ CH ₂ 197-198 A 93 5 119 4-Br,2-F-C ₆ H ₃ CH ₂ 122-174-176 A 96 7 R ₁ =R ₂ =CH ₃ ; X=O, Y=S 121 4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂ 174-176 A 96 7 R ₁ =R ₂ =CH ₃ ; X=O, Y=S	84	4-CF₃-C₀H₄CH₂	184-185	Α	98	13
87 4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂ 179-180 A 86 12 R ₁ =R ₂ =CH ₃ ; X=Y=O 88 H 208-209 A 91 >100 89 CH ₃ 225-227 A 76 170 90 C ₂ H ₅ 190.5-192 C 86 170 91 CH ₃ CH ₂ CH ₂ 185-186 A 95 460 92 (CH ₃) ₂ CHCH ₂ 170.5-171 A 90 170 R ₁ =R ₂ =CH ₃ ; X=Y=O 93 4-F-C ₆ H ₄ CH ₂ 210-210.5 A 92 50 94 4-Br,2-F-C ₆ H ₃ CH ₂ 205-207 A 97 6 R ₁ =R ₂ =H; X=O, Y=S 112 H 203-204 A 81 37 113 (CH ₃) ₂ CHCH ₂ 179-180 B 83 4 115 cyclohexylmethyl 157-158 B 78 3 116 4-CH ₃ -C ₆ H ₄ CH ₂ 200.5-201.5 B 72 117 4-Cl-C ₆ H ₄ CH ₂ 220-222 A 98 6 118 4-CF ₃ -C ₆ H ₄ CH ₂ 197-198 A 93 5 119 4-Br,2-F-C ₆ H ₃ CH ₂ 1224-225 A 88 210 3,4-(Cl) ₂ -C ₆ H ₃ CH ₂ 165-167.5 A 92 3 121 4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂ 174-176 A 96 7 R ₁ =R ₂ =CH ₃ ; X=O, Y=S 122 H 226-227 A 65 100	85	4-Br,2-F-C ₆ H ₃ CH ₂	197.5-199	Α	87	2.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	86	$3,4-(CI)_{g}C_{6}H_{3}CH_{2}$	197-199	В	58	4.6
88 H 208-209 A 91 >100 89 CH ₃ 225-227 A 76 170 90 C ₂ H ₅ 190.5-192 C 86 170 91 CH ₃ CH ₂ CH ₂ 185-186 A 95 460 92 (CH ₃) ₂ CHCH ₂ 170.5-171 A 90 170 R ₁ =R ₂ =CH ₃ ; X=Y=O 93 4-F-C ₆ H ₄ CH ₂ 210-210.5 A 92 50 94 4-Br,2-F-C ₆ H ₃ CH ₂ 205-207 A 97 6 R ₁ =R ₂ =H; X=O, Y=S 112 H 203-204 A 81 37 113 (CH ₃) ₂ CH 176-178 A 97 15 114 (CH ₃) ₂ CHCH ₂ 179-180 B 83 4 115 cyclohexylmethyl 157-158 B 78 3 116 4-CH ₃ -C ₆ H ₄ CH ₂ 200.5-201.5 B 72 2 117 4-Cl-C ₆ H ₄ CH ₂ 220-222 A 98 6 118 4-CF ₃ -C ₆ H ₄ CH ₂ 197-198 A 93 5 119 4-Br,2-F-C ₆ H ₃ CH ₂ 124-225 A 88 210 3,4-(Cl) ₂ -C ₆ H ₃ CH ₂ 165-167.5 A 92 3 121 4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂ 174-176 A 96 7 R ₁ =R ₂ =CH ₃ ; X=O, Y=S 122 H 226-227 A 65 100	87	4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂	179-180	Α	86	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R ₁ =R ₂ =	CH ₃ ; X=Y=O				
90 C_2H_5 190.5-192 C 86 170 91 $CH_3CH_2CH_2$ 185-186 A 95 460 92 $(CH_3)_2CHCH_2$ 170.5-171 A 90 170 $CH_1=R_2=CH_3$; $X=Y=O$ 93 $A-F-C_6H_4CH_2$ 210-210.5 A 92 50 94 $A-Br,2-F-C_6H_3CH_2$ 205-207 A 97 6 $CH_1=R_2=H$; $X=O$, $Y=S$ 112 $CH_1=X=CH_2$ 176-178 $CH_1=X=CH_2$ 179-180 $CH_1=X=CH_2$ 18 3 $CH_1=X=CH_2$ 18 3 $CH_1=X=CH_2$ 197-198 $CH_1=X=CH_2$ 197-19	88	Н	208-209	Α	91	>100
91	89	CH₃	225-227	Α	76	170
92 $(CH_3)_2CHCH_2$ 170.5-171 A 90 170 $R_1=R_2=CH_3$; X=Y=O 93 4-F-C ₆ H ₄ CH ₂ 210-210.5 A 92 50 94 4-Br,2-F-C ₆ H ₃ CH ₂ 205-207 A 97 6 $R_1=R_2=H$; X=O, Y=S 112 H 203-204 A 81 37 113 $(CH_3)_2CH$ 176-178 A 97 15 114 $(CH_3)_2CHCH_2$ 179-180 B 83 4 115 cyclohexylmethyl 157-158 B 78 3 116 4-CH ₃ -C ₆ H ₄ CH ₂ 200.5-201.5 B 72 2 117 4-Cl-C ₆ H ₄ CH ₂ 220-222 A 98 6 118 4-CF ₃ -C ₆ H ₄ CH ₂ 197-198 A 93 5 119 4-Br,2-F-C ₆ H ₃ CH ₂ 165-167.5 A 92 3 121 4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂ 174-176 A 96 7 $R_1=R_2=CH_3$; X=O, Y=S 122 H 226-227 A 65 100	90	C₂H₅	190.5-192	С	86	170
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91		185-186	Α	95	460
93 4-F-C ₆ H ₄ CH ₂ 210-210.5 A 92 50 94 4-Br,2-F-C ₆ H ₃ CH ₂ 205-207 A 97 6 R ₁ =R ₂ =H; X=O, Y=S 112 H 203-204 A 81 37 113 (CH ₃) ₂ CH 176-178 A 97 15 114 (CH ₃) ₂ CHCH ₂ 179-180 B 83 4 115 cyclohexylmethyl 157-158 B 78 3 116 4-CH ₃ -C ₆ H ₄ CH ₂ 200.5-201.5 B 72 2 117 4-Cl-C ₆ H ₄ CH ₂ 220-222 A 98 6 118 4-CF ₃ -C ₆ H ₄ CH ₂ 197-198 A 93 5 119 4-Br,2-F-C ₆ H ₃ CH ₂ 224-225 A 88 2 120 3,4-(Cl) ₂ -C ₆ H ₃ CH ₂ 165-167.5 A 92 3 121 4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂ 174-176 A 96 7 R ₁ =R ₂ =CH ₃ ; X=O, Y=S 122 H 226-227 A 65 100	92	(CH ₃) ₂ CHCH ₂	170.5-171	Α	90	170
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R₁=R₂=	-CH ₃ ; X=Y=O				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	93	4-F-C ₆ H₄CH₂	210-210.5	Α	92	50
112 H 203-204 A 81 37 113 $(CH_3)_2CH$ 176-178 A 97 15 114 $(CH_3)_2CHCH_2$ 179-180 B 83 4 115 cyclohexylmethyl 157-158 B 78 3 116 4-CH_3-CeH_4CH_2 200.5-201.5 B 72 2 117 4-Cl-CeH_4CH_2 220-222 A 98 6 118 4-CF_3-CeH_4CH_2 197-198 A 93 5 119 4-Br,2-F-CeH_3CH_2 224-225 A 88 2 120 3,4-(Cl)_2-CeH_3CH_2 165-167.5 A 92 3 121 4-(CH_3)_3C-CeH_4CH_2 174-176 A 96 7 R_1 = R_2 = CH_3 ; X = O , Y = S 122 H 226-227 A 65 100	94	4-Br,2-F-C ₆ H ₃ CH ₂	205-207	Α	97	6.3
113 $(CH_3)_2CH$ 176-178 A 97 15 114 $(CH_3)_2CHCH_2$ 179-180 B 83 4 115 cyclohexylmethyl 157-158 B 78 3 116 $4\text{-}CH_3\text{-}C_6H_4CH_2$ 200.5-201.5 B 72 2 117 $4\text{-}Cl\text{-}C_6H_4CH_2$ 220-222 A 98 6 118 $4\text{-}CF_3\text{-}C_6H_4CH_2$ 197-198 A 93 5 119 $4\text{-}Br,2\text{-}F\text{-}C_6H_3CH_2$ 224-225 A 88 2 120 $3,4\text{-}(Cl)_2\text{-}C_6H_3CH_2$ 165-167.5 A 92 3 121 $4\text{-}(CH_3)_3\text{-}C\text{-}C_6H_4CH_2$ 174-176 A 96 7 $R_1\text{-}R_2\text{-}CH_3$; X=O , Y=S	R₁=R₂=	=H ; X=O , Y=S				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	112	н	203-204	Α	81	37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	113	(CH ₃) ₂ CH	176-178	Α	97	15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	114	(CH ₃) ₂ CHCH ₂	179-180	В	83	4.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	115	cyclohexylmethyl	157-158	. В	78	3.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	116	4-CH ₃ -C ₆ H ₄ CH ₂	200.5-201.5	В	72	2.4
119 4 -Br,2-F-C ₆ H ₃ CH ₂ 224-225 A 88 2 120 3 ,4-(Cl) ₂ -C ₆ H ₃ CH ₂ 165-167.5 A 92 3 121 4 -(CH ₃) ₃ C-C ₆ H ₄ CH ₂ 174-176 A 96 7 R ₁ =R ₂ =CH ₃ ; X=O, Y=S 122 H 226-227 A 65 100	117	4-CI-C ₆ H ₄ CH ₂	220-222	Α	98	6.2
120 3,4-(CI) ₂ -C ₆ H ₃ CH ₂ 165-167.5 A 92 3 121 4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂ 174-176 A 96 7 R ₁ =R ₂ =CH ₃ ; X=O, Y=S 122 H 226-227 A 65 100	118	4-CF₃-C₀H₄CH₂	197-198	Α	93	5,6
121 4- $(CH_3)_3C-C_6H_4CH_2$ 174-176 A 96 7 $R_1=R_2=CH_3$; X=O, Y=S 122 H 226-227 A 65 100	119	4-Br,2-F-C ₆ H ₃ CH ₂	224-225	Α	88	2.4
R ₁ =R ₂ =CH ₃ ; X=O, Y=S 122 H 226-227 A 65 100	120	3,4-(Cl) ₂ -C ₆ H ₃ CH ₂	165-167.5	Α	92	3.3
122 H 226-227 A 65 100	121	4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂	174-176	Α	96	7.0
	R ₁ =R ₂ =	=CH ₃ ; X=O, Y=S				
	122	Н	226-227	Α	65	100
123 CH ₃ 249-250 A 80 70	123	CH ₃	249-250	Α	80	70
124 C ₂ H ₅ 213.5-214.5 A 83 23	124	C₂H₅	213.5-214.5	Α	83	23
125 CH ₃ CH ₂ CH ₂ 205-206 A 92 30	125	CH ₃ CH ₂ CH ₂	205-206	Α	92	30
126 (CH ₃) ₂ CHCH ₂ 187-189 A 90 21	126	(CH ₃) ₂ CHCH ₂	187-189	A	90	21

Table I. Continued.

127	4-F-C ₆ H₄CH₂	254-255	Α	92	7.3
128	4-Br,2-F-C ₈ H ₃ CH ₂	238-240	Α	92	4.4
R ₁ =R ₂	=H;X=Y=S				
140	Н	248-250	Α	70	6.4
141	(CH₃)₂CH	163-165	Α	83	7.0
142	(CH ₃) ₂ CHCH ₂	198-199.5	Α	81	5.4
143	cyclohexylmethyl	186-188	E	79	4.1
144	4-CH₃-C ₆ H₄CH₂	230-233	Α	78	3.8
145.	4-CI-C ₆ H ₄ CH ₂	247-249	D	58	3.0
146	4-CF ₃ -C ₆ H ₄ CH ₂	240-243	Α .	79	5.6
147	4-Br,2-F-C ₆ H ₃ CH ₂	252-255	Α	87	- 2.0
148	3,4-(CI) ₂ -C ₆ H ₃ CH ₂	203-205	Α	93	4.4
149	4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂	180-183	Ä	64	6.5
R ₁ =R ₂ :	=CH ₃ ; X=Y=S				
150	C₂H₅	249-251	Α	88	24

Recrystallization solvents. A: AcOH/H₂O; B: EtOH/H₂O; C: *iso*-Pr₂O/CH₂Cl₂/*n*-hexane; D: CH₂Cl₂/*n*-hexane/MeOH; E: MeOH/H₂O.

standard. The chemical shifts are given in ppm and the coupling constants in Hz. Splitting patterns are designated as follows: s, singlet; br s, broad singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Electron ionization mass (EI-MS) spectra were recorded on a JEOL JMS DX-303 spectrometer. Elemental analyses (C, H, N) were performed on a Yanagimoto MT-2 CHN recorder. Analytical results for elements were within $\pm\,0.4\%$ of theoretical values.

Column chromatography and thin-layer chromatography were carried out on a Kieselgel 60 (70–230 mesh) and with a Kieselgel 60 F-254 (E Merck). Visualization was accomplished with UV light.

The starting acylchlorides were commercially available, and 4-bromo-2-fluorobenzoyl chloride was prepared from 4-bromo-2-fluorobenzoic acid [10] by treatment with thionyl chloride. AR inhibitor, AD-5467, was synthesized in our laboratory.

General procedure for the synthesis of 12-21

The following procedure for the synthesis of ethyl 4-isobuty-ryl-2-pyrrolecarboxylate 12 is representative. The other compounds, 13–21, were obtained similarly. Physical data for these compounds are summarized in tables IV and V. Ethyl 3,5-dimethyl-2-pyrrolecarboxylate (1, $R_1 = R_2 = CH_3$) was commercially available and ethyl 2-pyrrolecarboxylate (1, $R_1 = R_2 = H$) was synthesized by the method of Bailey *et al* [11].

Ethyl 4-isobutyryl-2-pyrrolecarboxylate 12 (2, $R_1 = R_2 = H$, $R_3 = (CH_3)_2CH$)

A solution of ethyl 2-pyrrolecarboxylate (30.6 g, 220 mmol) in dichloroethane (100 ml) was added to a mixture of isobutyryl chloride (50.0 g, 469 mmol) and AlCl₃ (63.7 g, 478 mmol) in

Table II. Physical data for acetic acid derivatives of pyrrolo[1,2-c]imidazole.

Compd	Formula	Analysis	MS (M⁺)	1 H-NMR (DMSO-d _e) δ ppm
78	C ₈ H ₆ N ₂ O ₄	C, H, N	194	4.25 (s, 2H, CH ₂ COO), 6.60 (t, J=3 Hz, 1H, pyrrole H), 7.03 (d, J=3 Hz, 1H,
				pyrrole H), 7.68 (d, J=3 Hz, pyrrole H), 13.4 (br s, 1H, COOH)
79	$C_{11}H_{12}N_2O_4$	C, H, N	236	1.19 (d, J=7 Hz, 6H, 2CH ₃), 2.6-3.0 (m, 1H, CH), 4.23 (s, 2H, CH_2COO),
				7.01 (s, 1H, pyrole H), 7.46 (s, 1H, pyrrole H), 13.5 (br s, 1H, COOH)
80	$C_{12}H_{14}N_2O_4$	C, H, N	250	0.88 (d, J=7 Hz, 6H, 2CH $_3$), 1.6-2.0 (m, 1H,CH), 2.34 (d, J=7 Hz, 2H, CH $_2$),
				4.22 (s, 2H, CH ₂ COO), 6.90(s, 1H, pyrrole H), 7.45 (s, 1H, pyrrole H),
				13.3 (br s, 1H, COOH)
81	C ₁₅ H ₁₈ N ₂ O ₄	C, H, N	290	0.6-2.0 (m, 11H, cyclohexane H), 2.34 (d, J=6 Hz, 2H, CH ₂),
				4.22 (s, 2H, CH ₂ COO),6.89 (s, 1H, pyrrole H), 7.43 (s, 1H, pyrrole H),
				13.3 (br s, 1H, COOH)
82	C ₁₆ H ₁₄ N ₂ O ₄	C, H, N	298	2.26 (s, 3H, CH ₃), 3.76 (s, 2H, CH ₂), 4.22 (s, 2H, CH ₂ COO), 6.86 (s, 1H, pyrrole H
				7.0-7.3 (m, 4H, ArH), 7.47 (s, 1H, pyrrole H), 13.3 (br s, 1H, COOH)
83	C ₁₅ H ₁₁ CIN ₂ O ₄	C, H, N	318	3.82 (s, 2H, CH ₂), 4.23 (s, 2H, CH ₂ COO), 6.90 (s, 1H, pyrrole H),
				7.2-7.5 (m, 4H, ArH), 7.52 (s, 1H, pyrrole H), 13.3 (br s, 1H, COOH)
84	$C_{16}H_{11}F_3N_2O_4$	C, H, N	352	3.94 (s, 2H, CH ₂), 4.22 (s, 2H, CH ₂ COO), 6.93 (s, 1H, pyrrole H), 7.50 (d, J=9 Hz,
				2H, ArH), 7.57 (s, 1H, pyrrole H), 7.67 (d, J=9Hz, 2H, ArH), 13.3 (br s, 1H, COOH
85	C ₁₅ H ₁₀ BrFN ₂ O ₄	C, H, N	380	3.83 (s, 2H, CH ₂), 4.22 (s, 2H, CH ₂ COO), 6.89 (s, 1H, pyrrole H),
				7.15-7.6 (m, 3H, ArH), 7.49 (s, 1H, pyrrole H), 13.3 (br s, 1H, COOH)
86	C ₁₅ H ₁₀ Cl ₂ N ₂ O ₄	C, H, N	352	3.84 (s, 2H, CH ₂), 4.22 (s, 2H, CH ₂ COO), 6.95 (s, 1H, pyrrole H),
				7.2-7.7 (m, 3H, ArH), 7.57 (s, 1H, pyrrole H)
87	C ₁₉ H ₂₀ N ₂ O ₄	C, H, N	340	1.25 (s, 9H, 3CH ₃), 3.77 (s, 2H, CH ₂), 4.21 (s, 2H, CH ₂ COO),
				6.89 (s, 1H, pyrrole H), 7.18 (d, J=9 Hz, 2H, ArH),
				7.32 (d, J=9 Hz, 2H, ArH), 7.50 (s, 1H, pyrrole H), 13.3 (br s, 1H, COOH)
88	$C_{10}H_{10}N_2O_4$	C, H, N	222	2.19 (s, 3H, CH ₃), 2.39 (s, 3H, CH ₃), 4.18 (s, 2H, CH ₂ COO), 6.16 (s, 1H, pyrrole H
		•		13.5 (br s, 1H, COOH)
89	$C_{11}H_{12}N_2O_4$	C, H, N	236	1.90 (s, 3H, CH ₃), 2.14 (s, 3H, CH ₃), 2.34 (s, 3H, CH ₃), 4.17 (s, 2H, CH ₂ COO),
	.H₂O			13.6 (br s, 1H, COOH)
90	$C_{12}H_{14}N_2O_4$	C, H, N	250	1.03 (t, J=7 Hz, 3H, CH ₃), 2.17 (s, 3H, CH ₃), 2.33 (t, J=7 Hz, 2H, CH ₂),
				2.36 (s, 3H, CH ₃), 4.17 (s, 2H, CH ₂ COO), 13.3 (br s, 1H, COOH)
91	$C_{13}H_{16}N_2O_4$	C, H, N	264	0.88 (t, J=7 Hz, 3H, CH ₃), 1.2-1.7 (m, 2H, CH ₂), 2.16 (s, 3H, CH ₃),
				2.35 (s, 3H, CH ₃), 2.35 (t, J=7 Hz, 2H, CH ₂), 4.17 (s, 2H, CH ₂ COO),
				13.5 (br s, 1H, COOH)

Table II. Continued.

92	C ₁₄ H ₁₈ N ₂ O ₄	C, H, N	278	0.88(d, J=6 Hz, 6H, 2CH ₃), 1.4-2.0 (m, 1H, CH), 2.15 (s, 3H, CH ₃),
				2.23 (d, J=7 Hz, 2H, CH ₂), 2.35 (s, 3H, CH ₃), 4.17 (s, 2H, CH ₂ COO)
93	$C_{17}H_{15}FN_2O_4$	C, H, N	330	2.05 (s, 3H, $\rm CH_3$), 2.41 (s, 3H, $\rm CH_3$), 3.77 (s, 2H, $\rm CH_2$), 4.19 (s, 2H, $\rm CH_2COO$),
	.1/8H₂O			6.9-7.3 (m, 4H, ArH), 13.4 (br s, 1H, COOH)
94	$C_{17}H_{14}BrFN_2O_4$	C, H, N	. 408	2.06 (s, 3H, CH ₃), 2.39 (s, 3H, CH ₃), 3.75 (s, 2H, CH ₂), 4.18 (s, 2H, CH ₂ COO),
			en e	7.0-7.6 (m, 3H, ArH)
112	C₅H₅N₂O₃S	C, H, N	210	4.54 (s, 2H, CH ₂ COO), 6.59 (t, J=3 Hz, 1H, pyrrole H),
				7.14 (d, J=3 Hz, 1H, pyrrole H), 7.67 (d, J=3 Hz, 1H, pyrrole H),
				13.4 (br s, 1H, COOH)
113	C ₁₁ H ₁₂ N ₂ O ₃ S	C, H, N	252	1.19 (d, J=7 Hz, 6H, 2CH ₃), 2.6-3.0 (m, 1H, CH), 4.52 (s, 2H, CH ₂ COO),
				7.13 (s, 1H, pyrrole H), 7.46 (s, 1H, pyrrole H), 13.4 (br s, 1H, COOH)
114	C ₁₂ H ₁₄ N ₂ O ₃ S	C, H, N	266	0.88 (d, J=7 Hz, 6H, 2CH ₃), 1.6-2.0 (m, 1H, CH), 2.33 (d, J=7 Hz, 2H, CH ₂),
				4.51 (s, 2H, CH ₂ COO), 7.02 (s, 1H, pyrrole H), 7.45 (s, 1H, pyrrole H),
				13.4 (br s, 1H, COOH)
115	C ₁₅ H ₁₈ N ₂ O ₃ S	C, H, N	306	0.6-2.0 (m, 11H, cyclohexane H), 2.34 (d, J=6 Hz, 2H, CH ₂), 4.51 (s, 2H,
				CH ₂ COO), 7.00 (s, 1H, pyrrole H), 7.43 (s, 1H, pyrrole H), 13.4 (br s, 1H, COOH)
116	C ₁₆ H ₁₄ N ₂ O ₃ S	C, H, N	314	2.26 (s, 3H, CH ₃), 3.76 (s, 2H, CH ₂), 4.51 (s, 2H, CH ₂ COO), 6.95 (s, 1H, pyrrole H),
				7.0-7.3 (m, 4H, ArH), 7.48 (s, 1H, pyrrole H), 13.4 (br s, 1H, COOH)
117	C ₁₅ H ₁₁ CIN ₂ O ₃ S	C, H, N	334	3.82 (s, 2H, CH ₂), 4.51 (s, 2H, CH ₂ COO), 7.0 (s, 1H, pyrrole H),
	-		**	7.2-7.5 (m, 4H, ArH), 7.52 (s, 1H, pyrrole H), 13.3 (br s, 1H, COOH)
118	C ₁₆ H ₁₁ F ₃ N ₂ O ₃ S	C, H, N	368	3.93 (s, 2H, CH ₂), 4.52 (s, 2H, CH ₂ COO), 7.04 (s, 1H, pyrrole H),
				7.52 (d, J=9 Hz, 2H, ArH), 7.56 (s, 1H, pyrrole H), 7.68 (d, J=9 Hz, 2H, ArH),
				13.4 (br s, 1H, COOH)
119	$C_{15}H_{10}BrFN_2O_3S$	C, H, N	396	3.83 (s, 2H, CH ₂), 4.51 (s, 2H, CH ₂ COO), 6.98 (s, 2H, pyrrole H),
				7.2-7.6 (m, 3H, ArH), 7.49 (s, 1H, pyrrol H), 13.4 (br s, 1H, COOH)
120	$C_{15}H_{10}CI_2N_2O_3S$	C, H, N	368	3.83 (s, 2H, CH ₂), 4.51 (s, 2H, CH ₂ COO), 7.05 (s, 1H, pyrrole H),
				7.2-7.7 (m, 4H, ArH and pyrrole H), 13.4 (br s, 1H, COOH)
121	$C_{19}H_{20}N_2O_3S$	C, H, N	356	1.25 (s, 9H, 3CH ₃), 3.77 (s, 2H, CH ₂), 4.51 (s, 2H, CH ₂ COO),
				6.98 (s, 1H, pyrrole H), 7.19 (d, J=9 Hz, 2H, ArH), 7.33 (d, J=9 Hz, 2H, ArH),
				7.50 (s, 1H, pyrrole H), 13.4 (br s, 1H, COOH)
122	$C_{10}H_{10}N_2O_3S$	C, H, N	238	2.28 (s, 3H, CH ₃), 2.38 (s, 3H, CH ₃), 4.49 (s, 2H, CH ₂ COO), 6.24 (s, 1H, pyrrole H),
	•			13.4 (br s, 1H, COOH)
123	$C_{11}H_{12}N_2O_3S$	C, H, N	252	1.92 (s, 3H, CH ₃), 2.23 (s, 3H, CH ₃), 2.32 (s, 3H, CH ₃), 4.47 (s, 2H, CH ₂ COO),
				13.3 (br s, 1H, COOH)

Table II. Continued.

124	C ₁₂ H ₁₄ N ₂ O ₃ S	C, H, N	266	1.04 (t, J=8 Hz, 3H, CH ₃), 2.28 (s, 3H, CH ₃), 2.35 (s, 3H, CH ₃),
				2.35 (t, J=7 Hz, 2H, CH ₂), 4.48 (s, 2H, CH ₂ COO), 13.3 (br s, 1H, COOH)
125	$C_{13}H_{16}N_2O_3S$	C, H, N	280	0.89 (t, $J=7Hz$, 3H, CH_3), 1.1-1.7 (m, 2H, CH_2), 2.26 (s, 3H, CH_3), 2.34 (s, 3H, CH_3)
				, 2.34 (t, J=7 Hz, 2H, CH ₂), 4.48 (s, 2H, CH ₂ COO), 13.4 (br s, 1H, COOH)
126	$C_{14}H_{18}N_2O_3S$	C, H, N	294	0.89 (d, J=6 Hz, 6H, 2CH ₃), 1.5-1.9 (m, 1H, CH), 2.26 (s, 3H, CH ₃),
				2.26 (d, J=7 Hz, 2H, CH ₂), 2.34 (s, 3H, CH ₃), 4.48 (s, 2H, CH ₂ COO)
127	$C_{17}H_{15}FN_2O_3S$	C, H, N	346	2.16 (s, 3H, CH ₃), 2.39 (s, 3H, CH ₃), 3.79 (s, 2H, CH ₂), 4.49 (s, 2H, CH ₂ COO),
				6.9-7.4 (m, 4H, ArH)
128	$C_{17}H_{14}BrFN_2O_3S$	C, H, N	424	2.17 (s, 3H, CH ₃), 2.37 (s, 3H, CH ₃), 3.78 (s, 2H, CH ₂), 4.49 (s, 2H, CH ₂ COO),
				7.0-7.6 (m, 3H, ArH), 13.3 (br s, 1H, COOH)
140	$C_8H_6N_2O_2S_2$	C, H, N	226	4.83 (s, 2H, CH ₂ COO), 6.59 (t, J=3 Hz, 1H, pyrrole H), 7.20 (d, J=3 Hz, 1H,
				pyrrole H), 7.69 (d, J=3 Hz, 1H, pyrrole H), 13.4 (br s, 1H, COOH)
141	$C_{11}H_{12}N_2O_2S_2$	C, H, N	268	1.20(d, J=7 Hz, 6H, 2CH ₃), 2.6-3.0 (m, 1H, CH), 4.79 (s, 2H, CH ₂ COO),
	.1/4CH ₃ COOH ^a			7.21 (s, 1H, pyrrole H), 7.46 (s, 1H, pyrrole H), 13.3 (br s, 1H, COOH)
142	$C_{12}H_{14}N_2O_2S_2$	C, H, N	282	0.89 (d, J=6 Hz, 6H, 2CH ₃), 1.6-2.0 (m, 1H, CH), 2.34 (d, J=7 Hz, 2H, CH ₂),
				4.79 (s, 2H, CH ₂ COO), 7.10 (s, 1H, pyrrole H), 7.47 (s, 1H, pyrrole H),
				13.4 (br s, 1H, COOH)
143	$C_{15}H_{18}N_2O_2S_2$	C, H, N	322	0.6-2.0 (m, 11H, cyclohexane H), 2.35 (d, J=6 Hz, 2H, CH ₂), 4.79 (s, 2H,
				CH ₂ COO), 7.07 (s, 1H, pyrrole H), 7.45 (s, 1H, pyrrole H), 13.4 (br s, 1H, COOH)
144	$C_{16}H_{14}N_2O_2S_2$	C, H, N	330	2.26 (s, 3H, CH_3), 3.77 (s, 2H, CH_2), 4.78 (s, 2H, CH_2COO), 7.02 (s, 1H,
				pyrrole H), 7.0-7.3 (m, 4H, ArH), 7.48 (s, 1H, pyrrole H), 13.4 (br s, 1H, COOH)
145	$C_{15}H_{11}CIN_2O_2S_2$	C, H, N	350	3.83 (s, 2H, CH ₂), 4.79 (s, 2H, CH ₂ COO), 7.08 (s, 1H, pyrrole H), 7.2-7.5
				(m, 4H, ArH), 7.54 (s, 1H, pyrrole H), 13.4 (br s, 1H, COOH)
146	$C_{16}H_{11}F_3N_2O_2S_2$	C, H, N	384	3.94 (s, 2H, CH ₂), 4.79 (s, 2H, CH ₂ COO), 7.11 (s, 1H, pyrrole H), 7.53 (d, J=9 Hz,
				2H, ArH), 7.59 (s, 1H, pyrrole H), 7.68 (d, J=9 Hz, 2H, ArH), 13.4 (br s, 1H,COOH)
147	$C_{15H_{10}BrFN_2O_2S_2}$	C, H, N	412	3.84 (s, 2H, CH ₂), 4.79 (s, 2H, CH ₂ COO), 7.04 (s, 1H, pyrrole H), 7.2-7.65
				(m, 3H, ArH), 7.51 (s, 1H, pyrrole H), 13.4 (br s, 1H, COOH)
148	$C_{15}H_{10}Cl_2N_2O_2S_2$	C, H, N	384	3.84 (s, 2H, CH ₂), 4.79 (s, 2H, CH ₂ COO), 7.13 (s, 1H, pyrrole H), 7.2-7.7
				(m, 3H, ArH), 7.60 (s, 1H, pyrrole H), 13.4 (br s, 1H, COOH)
149	$C_{19}H_{20}N_2O_2S_2$	C, H, N	372	1.26 (s, 9H, 3CH $_3$), 3.78 (s, 2H, CH $_2$), 4.79 (s, 2H, CH $_2$ COO), 7.06 (s, 1H,
	.3/4CH₃COOH	a		pyrrole H), 7.21 (d, J=9 Hz, 2H, ArH), 7.34 (d, J=9 Hz, 2H, ArH),
				7.52 (s, 1H, pyrrole H), 13.3 (br s, 1H, COOH)
150	$C_{12}H_{14}N_2O_2S_2$	C, H, N	282	1.05 (t, J=8 Hz, 3H, CH_3), 2,28 (s, 3H, CH_3), 2.37 (q, J=8 Hz, 2H, CH_2),
				2.45 (s, 3H, CH ₃), 4.80 (s, 2H, CH ₂ COO), 13.4 (br s, 1H, COOH)

^aDetermined by NMR analysis.

Table III. Inhibition of sorbitol accumulation in the sciatic nerves

Compd	R₄	Inhibition of sorbitol accumulation % of control				
		100 x 2	50 x 2	25 x 2 (mg/kg/day)		
R ₁ =R ₂ =H	; X=Y=O					
83	4-CI-C ₆ H ₄ CH ₂	3.1	NT	NT		
85	4-Br,2-F-C ₆ H ₃ CH ₂	NT	-1.8	NT		
R ₁ =R ₂ =H	; X=0, Y=S					
114	(CH ₃) ₂ CHCH ₂	32.6*	NT	NT		
115	cyclohexylmethyl	NT	-21.0	NT		
117	4-Cl-C ₆ H ₄ CH ₂	52.9***	NT	NT		
119	4-Br,2-F-C ₆ H ₃ CH ₂	NT	5.1	NT		
120	3,4-(Cl) ₂ -C ₆ H ₃ CH ₂	31.3*	NT	NT		
R ₁ =R ₂ =C	H ₃ ; X=O, Y=S					
123	CH ₃	NT	NT	0.4		
124	C₂H₅	NT	46.9**	5.3		
125	CH₃CH₂CH₂	NT	NT	-11.2		
126	(CH ₃) ₂ CHCH ₂	NT	23.2	ŃT		
127	4-F-C ₆ H₄CH₂	NT	20.4	NT		
128	4-Br,2-F-C ₆ H ₃ CH ₂	NT :	3.1	NT		
R1=R2=l	H;X=Y=S					
140	Н	NT	-16.3	NT		
141	(CH ₃) ₂ CH	NT	12.1	NT		
142	(CH ₃) ₂ CHCH ₂	47.8***	NT	NT		
143	cyclohexylmethyl	NT	4.5	NT		
144	4-CH₃-C₅H₄CH₂	NT	1.1	NT		
R1=R2=F	H;X=Y=S					
145	4-CI-C ₆ H₄CH₂	NT	13.4	NT		
146	4-CF ₃ -C ₆ H ₄ CH ₂	NT	19.1	NT		
147	4-Br,2-F-C₅H₃CH₂	NT	16.6	NT		
1.48	3,4-(CI) ₂ -C ₆ H ₃ CH ₂	64.4***	3.3	NT		
149	4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂	NT	-1.6	NT		
R ₁ =R ₂ =C	H ₃ ; X=Y=S					
150	C ₂ H ₅	NT	NT	1.9		
AD-5467	7	NT	53.2***	NT		

NT: not tested; Student's *t*-test; *P < 0.01; **P < 0.05; ***P < 0.001.

Table IV. Physical data for ethyl acylpyrrolecarboxylate derivatives.

		Я1	≠ ¦		C₂H₅		
Compd	R_3	mp (°C)		Recryst	Yield (%)	Formula	Analysis
R,=R2=1	1						
12	(CH ₃) ₂ CH	oil	bp :	50-152℃	79	C ₁₁ H ₁₅ NO ₃	C, H, N
			/0.0	02 mmHg		.1/4H ₂ O	
13	cyclohexyl	98-99.5		Α	92	$C_{14}H_{19}NO_3$	C, H, N
14	4-CH ₃ -C ₆ H ₄	105.5-106	.5	В	64	$C_{15}H_{15}NO_3$	C, H, N
15	4-CI-C _ε H ₄	124-125.	5	С	98	C ₁₄ H ₁₂ CIN ₃ O ₃	C, H, N
16	4-CF ₃ -C ₆ H ₄	131-137	•	Α	98	$C_{15}H_{12}F_3NO_3$	C, H, N
						.2/3H₂O	
17	4-Br,2-F-C ₆ H ₃	108-109	1	D	98	C ₁₄ H ₁₁ BrFNO ₃	C, H, N
18	3,4-(CI) ₂ -C ₆ H ₃	157.5-158	.5	. E	74	C ₁₄ H ₁₁ CI ₂ NO ₃	C, H, N
19	4-(CH ₃) ₃ C-C ₆ H ₄	150-152		В	31	$C_{18}H_{21}NO_3$	C, H, N
$R_1=R_2=C$	CH ₃						
20	4-F-C ₆ H ₄	153.5-155	.5	F	95	$C_{16}H_{16}FNO_{3}$	C, H, N
21	4-Br,2-F-C ₆ H ₃	169-171		F	95	C ₁₆ H ₁₅ BrFNO ₃	C, H, N

Recrystallization solvents. A: *iso*-Pr₂O/*n*-hexane; B: *iso*-Pr₂O; C: CHCl₃/*n*-hexane; D: benzene/*n*-hexane; E: EtOH/H₂O; F: EtOH.

dichloroethane (100 ml) under ice cooling. The mixture was stirred at room temperature for 2 h, followed by heating under reflux for 2 h. The reaction mixture was poured into ice and extracted with chloroform. The organic layer was washed with water (H₂O), 1 N NaOH solution and saturated NaCl solution. After concentration, the residue was distilled under reduced pressure to give a pale brown oil (12, 36.1 g, 79%, bp: $150-152^{\circ}\text{C}/0.02 \text{ mmHg})$. $^{1}\text{H-NMR}(\text{CDC1}_3)$ δ : 1.21 (d, J=7 Hz, 6H, 2CH₃), 1.38 (t, J=7 Hz, 3H, CH₃), 3.0–3.5 (m, 1H, CH), 4.36 (q, J=7 Hz, 2H, CH₂), 7.2–7.4 (m, 1H, pyrrole H), 7.5–7.7 (m, 1H, pyrrole H), 10.2 (br s, 1H, NH). MS: 209 (M+). Anal C₁₁H₁₅NO₃ •1/4H₂O (C, H, N).

General procedure for the synthesis of 22-31

The following procedure for the synthesis of ethyl 4-isobutyl-2-pyrrolecarboxylate 22 is representative. The other compounds, 23–31, were obtained in a similar manner. Physical data for these compounds are summarized in tables VI and VII. Ethyl 3,5-dimethyl-4-propyl-2-pyrrolecarboxylate and ethyl 4-isobutyl-3,5-dimethyl-2-pyrrolecarboxylate were prepared by a previously described method [12, 13].

Ethyl 4-isobutyl-2-pyrrolecarboxylate 22 (3, $R_1 = R_2 = H$, $R_4 = (CH_3)_2CHCH_2$)

Triethylsilane (45 ml, 282 mmol) was added to a solution of ethyl 4-isobutyryl-2-pyrrolecarboxylate (12, 14.6 g, 69.8 mmol) in trifluoroacetic acid (50 ml) and stirred for 3 h under ice cooling, followed by stirring at room temperature for 16 h.

Table V. Physical data for ethyl acylpyrrolecarboxylate derivatives.

Compd	Solvent	1 H-NMR δ ppm
12	C	1.21 (d, J=7 Hz, 6H, 2CH ₃), 1.38 (t, J=7 Hz, 3H, CH ₃), 3.0-3.5 (m, 1H, CH), 4.36 (q, J=7 Hz, 2H, CH ₂),
		7.2-7.4 (m, 1H, pyrrole H), 7.5-7.7 (m, 1H, pyrrole H), 10.2 (br s, 1H, NH)
13	С	1.38 (t, J=7 Hz, 3H, CH ₃), 1.0-2.1 (m, 10H, cyclohexane H), 2.7-3.1 (m, 1H, cyclohexane H),
		4.36 (q, J=7 Hz, 2H, CH ₂), 7.2-7.35 (m, 1H, pyrrole H), 7.5-7.65 (m, 1H, pyrrole H), 9.8 (br s, 1H, NH)
14	С	1.38 (t, J=7 Hz, 3H, CH ₃), 2.44 (s, 3H, CH ₃), 4.36 (q, J=7 Hz, 2H, CH ₂),
		7.2-7.4 (m, 3H, ArH and pyrrole H), 7.5-7.6 (m, 1H, pyrrole H), 7.77 (d, J=8 Hz, 2H, ArH), 9.7 (br s, 1H, NH)
15	D ·	1.38 (t, $J=7$ Hz, 3H, CH_3), 4.37 (q, $J=7$ Hz, 2H, CH_2), 7.2-7.7 (m, 4H, ArH and pyrrole H),
		7.7-8.0 (m, 2H, ArH), 10.1 (br s, 1H, NH)
16	D	1.30 (t, J=7 Hz, 3H, CH ₃), 4.29 (q, J=7 Hz, 2H, CH ₂), 7.15 (br s, 1H, pyrrole H), 7.64 (br s, 1H, pyrrole H),
		7.8-8.2 (m, 4H, ArH), 12.8 (br s, 1H, NH)
17	D	1.29 (t, J=7 Hz, 3H, CH ₃), 4.27 (q, J=7 Hz, 2H, CH ₂), 7.07 (s, 1H, pyrrole H),
		7.4-7.8 (m, 4H, ArH and pyrrole H), 12.8 (br s, 1H, NH)
18	Ď	1.31 (t, J=7 Hz, 3H, CH ₃), 4.30 (q, J=7 Hz, 2H, CH ₂), 7.16 (d, J=2 Hz, 1H, pyrrole H),
		7.66 (d, J=2 Hz, 1H, pyrrole H), 7.7-8.0 (m, 3H, ArH), 12.8 (br s, 1H, NH)
19	D	1.30 (t, J=7 Hz, 3H, CH ₃), 1.33 (s, 9H, 3CH ₃), 4.29 (q, J=7 Hz, 2H, CH ₂), 7.15 (s, 1H, pyrrole H),
		7.55 (d, J=9 Hz, 2H, ArH), 7.60 (s, 1H, pyrrole H), 7.76 (d, J=9 Hz, 2H, ArH), 12.7 (br s, 1H, NH)
20	D	1.31 (t, J=7 Hz, 3H, CH ₃), 2.11 (s, 3H, CH ₃), 2.17 (s, 3H, CH ₃), 4.27 (q, J=7 Hz, 2H, CH ₂),
		7.2-7.8 (m, 4H, ArH), 11.9 (br s, 1H, NH)
21	D	1.29 (t, J=7 Hz, 3H, CH ₃), 2.10 (s, 3H, CH ₃), 2.22 (s, 3H, CH ₃), 4.26 (q, J=7 Hz, 2H, CH ₂),
		7.3-7.8 (m, 3H, ArH), 12.1 (br s, 1H, NH)

Measurement solvents. C: CDCl₃; D: DMSO-d₆.

Table VI. Physical data for ethyl pyrrolecarboxylate derivatives.

Comp	od R ₄	mp (°C)	Recryst	Yield (%)	Formula	Analysis
R ₁ =R ₂	₂ =H					
22	(CH ₃) ₂ CHCH ₂	oil	bp 108-112	°C 96	C ₁₁ H ₁₇ NO ₂	C, H, N
			/0.04 mmH	g	.1/8H ₂ O	
23	cyclohexylmethyl	oil 1	bp 141-143	°C 59	$C_{14}H_{21}NO_2$	C, H, N
			/0.05 mmH ₂	g		
24	4-CH ₃ -C ₆ H ₄ CH ₂	67.5-68.5	5 A	76	C ₁₅ H ₁₇ NO ₂	C, H, N
25	4-CI-C ₆ H ₄ CH ₂	76-77	Α	81	C ₁₄ H ₁₄ CINO ₂	C, H, N

Table VI. Continued.

26	4-CF ₃ -C ₆ H ₄ CH ₂	80-80.5	В	27	C ₁₅ H ₁₄ F ₃ NO ₂	C, H, N
					.1/16C ₆ H ₁₄ ^a	
27	4-Br,2-F-C _ε H ₃ CH ₂	87-88	В	27	$C_{14H_{13}BFNO_2}$	C ^b , H, N
28	3,4-(Cl) ₂ -C ₆ H ₃ CH ₂	89-89.5	Α	70	$C_{14}H_{13}CI_2NO_2$	C, H, N
29	4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂	66-66.5	В	70	C ₁₈ H ₂₃ NO ₂	C, H, N
R ₁ =R ₂	₂ =CH ₃					
30	4-F-C ₆ H ₄ CH ₂	128-129	В	28	C ₁₆ H ₁₈ FNO ₂	C, H, N
					.1/8H ₂ O	
31	4-Br,2-F-C ₆ H ₃ CH ₂	139-139.5	В	63	C ₁₆ H ₁₇ BrFNO ₂	C, H, N

Recrystallization solvents. A: iso-Pr₂O/n-hexane; B: n-hexane; ^adetermined by NMR analysis; C^b: calcd, 51.55; found, 52.50.

Table VII. Physical data for ethyl pyrrolecarboxylate derivatives.

Compd	Solvent	¹ H-NMR δ ppm
22	С	0.89 (d, J=6 Hz, 6H, 2CH ₃), 1.34 (t, J=7 Hz, 3H, CH ₃), 1.5-2.0 (m, 1H, CH), 2.32 (d, J=7 Hz, 2H, CH ₂),
		4.31 (q, J=7 Hz, 2H, CH ₂), 6.73 (br s, 2H, pyrrole H), 9.4 (br s, 1H, NH)
23	С	0.6-2.0 (m, 11H, cyclohexane H), 1.34 (t, J=7 Hz, 3H, $\mathrm{CH_3}$), 2.32 (d, J=7 Hz, 2H, $\mathrm{CH_2}$),
		4.30 (q, J=7 Hz, 2H, CH ₂), 6.72 (br s, 2H, pyrrole H), 7.10 (s, 4H, ArH), 9.25 (br s, 1H, NH)
24	С	1.32 (t, J=7 Hz, 3H, CH ₃), 2.31 (s, 3H, CH ₃), 3.78 (s, 2H, CH ₂), 4.28 (q, J=7 Hz, 2H, CH ₂),
		6.6-6.8 (m, 2H, pyrrole H), 7.10 (s, 4H, ArH), 9.0 (br s, 1H, NH)
25	D	1.25 (t, J=7 Hz, 3H, CH ₃), 3.73 (s, 2H, CH ₂), 4.19 (q, J=7 Hz, 2H, CH ₂), 6.57 (br s, 1H, pyrrole H),
		6.84 (br s, 1H, pyrrole H), 7.1-7.4 (m, 4H, ArH), 11.7 (br s, 1H, NH)
26	D	1.25 (t, $J=7$ Hz, 3H, CH_3), 3.84 (s, 2H, CH_2), 4.19 (q, $J=7$ Hz, 2H, CH_2), 6.60 (br s, 1H, pyrrole H),
		6.89 (br s, 1H, pyrrole H), 7.43 (d, J=8 Hz, 2H, ArH), 7.46 (d, J=8 Hz, 2H, ArH), 11.7 (br s, 1H, NH)
27	D	1.25 (t, J=7 Hz, 3H, CH ₃), 3.75 (s, 2H, CH ₂), 4.20 (q, J=7 Hz., 2H, CH ₂), 6.59 (br s, 1H, pyrrole H),
		6.85 (br s, 1H, pyrrole H), 7.1-7.6 (m, 3H, ArH), 11.7 (br s, 1H, NH)
28	D	1.25 (t, J=7 Hz, 3H, CH_3), 3.75 (s, 2H, CH_2), 4.20 (q, J=7 Hz, 2H, CH_2), 6.61 (br s, 1H, pyrrole H),
	ř	6.88 (br s, 1H, pyrrole H), 7.1-7.6 (m, 3H, ArH), 11.7 (br s, 1H, NH)
29	D	1.25 (t, J=7 Hz, 3H, CH ₃), 1.25 (s, 9H, 3CH ₃), 3.69 (s, 2H, CH ₂), 4.19 (q, J=7 Hz, 2H, CH ₂),
		5.57 (br s, 1H, pyrrole H), 6.81 (br s, 1H, pyrrole H), 7.12 (d, J=9 Hz, 2H, ArH), 7.28 (d, J=9 Hz, 2H, ArH),
		11.6 (br s, 1H, NH)
30	D	1.27 (t, J=7 Hz, 3H, CH ₃), 2.12 (s, 6H, 2CH ₃), 3.67 (s, 2H, CH ₂), 4.19 (q, J=7 Hz, 2H, CH ₂),
		7.03 (d, J=7 Hz, 4H, ArH), 11.5 (br s, 1H, NH)
31	D	1.26 (t, J=7 Hz, 3H, CH ₃), 2.10 (s, 6H, 2CH ₃), 3.64 (s, 2H, CH ₂), 4.19 (q, J=7 Hz, 2H, CH ₂),
		6.8-7.6 (m, 3H, ArH), 11.2 (br s, 1H, NH)

Measurement solvent. C: CDCl₃; D: DMSO-d₆.

Table VIII. Physical data for pyrrolecarboxylic acid derivatives. B_1 B_2

Н									
Compd	R ₄	mp (°C)	Recryst	Yield (%)	Formula	Analysis			
R,=R2=H									
32	(CH ₃) ₂ CHCH ₂	177-178.5	. А	98	$C_9H_{13}NO_2$	C, H, N			
					.1/16H₂O				
33.	cyclohexylmethyl	153.5-154	В	98	$C_{12}H_{17}NO_2$	Cª, H, N			
					.1/8C ₆ H ₁₄ O ^b				
34	4-CH₃-C₅H₄CH₂	199-200	Α	98 .	C ₁₈ H ₁₈ NO ₂	C, H, N			
35	4-CI-C ₆ H₄CH ₂	192.5-193	С	98	$C_{12H_{10}CINO_2}$	C, H, N			
36	$\text{4-CF}_{\text{3}}\text{-C}_{\text{6}}\text{H}_{\text{4}}\text{CH}_{\text{2}}$	180-182	D	96	$C_{13}H_{10}F_3NO_2$	C, H, N			
37	4-Br,2-F-C ₆ H ₃ CH ₂	200-202	E	93	$C_{12}H_9BrFNO_2$	C, H, N			

Table VIII. Continued.

38	3,4-(Cl) ₂ -C ₆ H ₃ CH ₂	184.5-185	Α	98	C ₁₂ H ₉ Cl ₂ NO ₂	C, H, N
39	4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂	179-181	·F	. 90	C ₁₆ H ₁₉ NO ₂	C, H, N
R ₁ =R ₂ =	CH ₃					•
40	CH ₃ CH ₂ CH ₂	114.5-115.5	G	61	C ₁₀ H ₁₅ NO ₂	C, H, N
41	(CH ₃) ₂ CHCH ₂	107.5-108.5	Н	66	C ₁₁ H ₁₇ NO ₂	C, H, N
42	4-F-C ₆ H ₄ CH ₂	161.5-162.5	F	82	C ₁₄ H ₁₄ FNO ₂	C, H, N
43	4-Br,2-F-C ₆ H ₃ CH ₂	158-160	Ε	89	C ₁₄ H ₁₃ BrFNO ₂	C, H, N
					.3/4CH₃CN ^b	
					•	

Recrystallization solvents. A: CH₂Cl₂/MeOH/*iso*-Pr₂O; B: CH₂Cl₂/*iso*-Pr₂O; C: CHCl₃/*iso*-Pr₂O; D: CH₃CN/CHCl₃; E: *iso*-Pr₂O/CH₃CN; F: *iso*-Pr₂O; G: *iso*-Pr₂O/*n*-hexane; H: *n*-hexane; Ca: calcd, 69.60; found, 70.03; bdetermined by NMR analysis.

Table IX. Physical data for pyrrolecarboxylic acid derivatives.

Compd	1 H-NMR (DMSO-d _e) δ ppm
32	0.85 (d, J=7 Hz, 6H, 2CH ₃), 1.4-2.0 (m, 1H, CH), 2.25 (d, J=7 Hz, 2H, CH ₂), 6.53 (br s, 1H, pyrrole H),
*0	6.72 (br s, 1H, pyrrole H), 11.4 (br s, 1H, NH), 12.05 (br s, 1H, COOH)
33	0.6-2.0 (m, 11H, cyclohexane H), 2.25 (d, J=7 Hz, 2H, CH ₂), 6.51 (br s, 1H, pyrrole H), 6.70 (br s, 1H, pyrrole H),
	11.35 (brs, 1H, NH), 12.05 (brs, 1H, COOH)
34	2.25 (s, 3H, CH ₃), 3.68 (s, 2H, CH ₂), 6.50 (br s, 1H, pyrrole H), 6.73 (br s, 1H, pyrrole H), 7.08 (s, 4H, ArH),
	11.4 (br s, 1H, NH), 12.1 (br s, 1H, COOH)
35	3.73 (s, 2H, CH ₂), 6.53 (br s, 1H, pyrrole H), 6.78 (br s, 1H, pyrrole H), 7.1-7.45 (m, 4H, ArH), 11.5 (br s, 1H, NH),
	12.1 (br s, 1H, COOH)
36	3.85 (s, 2H, CH ₂), 6.57 (br s, 1H, pyrrole H), 6.84 (br s, 1H, pyrrole H), 7.44 (d, J=8 Hz, 2H, ArH),
	7.64 (d, J=8 Hz, 2H, ArH), 11.6 (br s, 1H, NH), 12.2 (br s, 1H, COOH)
37	3.73 (s, 2H, CH ₂), 6.52 (br s, 1H, pyrrole H), 7.78 (br s, 1H, pyrrole H), 7.1-7.6 (m, 3H, ArH), 11.5 (br s, 1H, NH),
	12.2 (br s, 1H, COOH)
38	3.76 (s, 2H, CH ₂), 6.58 (br s, 1H, pyrrole H), 6.85 (br s, 1H, pyrrole H), 7.1-7.6 (m, 3H, ArH), 11.6 (br s, 1H, NH),
	12.2 (br s, 1H, COOH)
39	1.25 (s, 9H, 3CH ₃), 3.68 (s, 2H, CH_2), 6.51 (br s, 1H, pyrrole H), 6.76 (br s, 1H, pyrrole H), 7.11 (d, J=9 Hz, 2H, ArH),
	7.29 (d, J=9 Hz, 2H, ArH), 11.5 (br s, 1H, NH), 12.1 (br s, 1H, COOH)
40	0.85 (t, $J=7$ Hz, $3H$, CH_3), $1.1-1.6$ (m, $2H$, CH_2), 1.21 (s, $3H$, CH_3), 2.16 (s, $3H$, CH_3), 2.26 (t, $J=7$ Hz, $2H$, CH_2),
	11.4 (brs, 1H, NH), 12.0 (brs, 1H, COOH)
41	0.83 (d, J=6 Hz, 6H, 2CH ₃), 1.6-1.8 (m, 1H, CH), 2.09 (s, 3H, CH ₃), 2.14 (s, 3H, CH ₃), 2.16 (d, J=6 Hz, 2H, CH ₂),
	10.9 (br s, 1H, NH), 11.7 (br s, 1H, COOH)
42	2.10 (s, 6H, 2CH ₃), 2.65 (s, 2H, CH ₂), 7.07 (d, J=7 Hz, 4H, ArH), 11.1 (br s, 1H, NH), 11.8 (br s, 1H, COOH)
43	2.08 (s, $3H$, CH_3), 2.09 (s, $3H$, CH_3), 3.63 (s, $2H$, CH_2), 6.8 - 7.6 (m, $3H$, ArH), 11.1 (br s, $1H$, NH), 11.9 (br s, $1H$, $COOH$)

Table X. Physical data for ethyl pyrrolecarbonylaminoacetate derivatives.

Compd	R ₄	mp (°C)	Recryst	Yield (%)	Formula	Analysis
R ₁ =R ₂ =1						
44	Н	112-113	A	65	C ₉ H ₁₂ N ₂ O ₃ .1/3H ₂ O	C, H, N
45	(CH ₃) ₂ CH	102-104	Α	88	$C_{12}H_{18}N_2O_3$	C, H, N
46	$(CH_3)_2CHCH_2$	136.5-138	В	98	$C_{13}H_{20}N_2O_3$	C, H, N
47	cyclohexylmethyl	123-124	В	98	$C_{16}H_{24}N_2O_3$	C, N, N
48	4-CH ₃ -C ₆ H ₄ CH ₂	104-106.5	В	98	C ₁₇ H ₂₀ N ₂ O ₃ .1/2H ₂ O	C, H, N
49	4-Cl-C ₆ H ₄ CH ₂	124.5-125.5	5 В	80	$C_{16}H_{17}CIN_2O_3$	C, H, N
50	4-CF ₃ -C ₆ H ₄ CH ₂	96-99	С	90	$C_{17}H_{17}F_3N_2O_3$.1/8 $C_6H_{14}O^a$	C, H, N

Table X. Continued.

labie	A. Commuea.					
51	4-Br,2-F-C _e H ₃ CH ₂	133-134	D	84	C ₁₆ H ₁₆ BrFN ₂ O ₃	, C, H, N
52	3,4-(CI) ₂ -C ₆ H ₃ CH ₂	97.5-98.5	В	71	C ₁₆ H ₁₆ CI ₂ N ₂ O ₃	C, H, N
53	4-(CH ₃) ₃ C-C ₆ H ₄ CH	101-101.5	E	88	$C_{20}H_{26}N_2O_3$	C, H, N
R ₁ =R ₂ =	CH3					
54	Н	135-137	F	79	C ₁₁ H ₁₆ N ₂ O ₃ .1/8H ₂ O	C, H, N
55	CH ₃	155-156.5	F	98	C ₁₂ H ₁₈ N ₂ O ₃	C, H, N
R ₁ =R ₂ =	CH ₃					
56	C_2H_5	127-128	В	84	$C_{13}H_{20}N_2O_3$	C, H, N
57	CH ₃ CH ₂ CH ₂	103-104.5	F	83	$C_{14}H_{22}N_2O_3$	C, H, N
58	(CH ₃) ₂ CHCH ₂	144.5-145.5	F	79	$C_{15}H_{24}N_2O_3$	C, H, N
59	4-F-C₅H₄CH₂	144.5-145.5	F	89	$C_{18}H_{21}FN_2O_3$	C, H, N
60	4-Br,2-F-C ₆ H ₃ CH ₂	166-167	F	98	C ₁₈ H ₂₀ BrFN ₂ O	_з С, Н, N

Recrystallization solvents. A: only washed with H_2O ; B: CH_2Cl_2/iso - Pr_2O ; C: iso- Pr_2O/n -hexane; D: CH_3CN/iso - Pr_2O ; E: iso- Pr_2O ; F: EtOH; ^adetermined by NMR analysis.

Table XI. Physical data for ethyl pyrrolecarbonylaminoacetate derivatives.

Compd	Solvent	¹ H-NMR δ ppm
44	D	1.20 (t, J=7 Hz, 3H, CH ₃), 3.94 (d, J=6Hz, 2H, CH ₂ COO), 4.11 (q, J=7 Hz, 2H, CH ₂),
		6.0-6.2 (m, 1H, pyrrole H), 6.7-8.0 (m, 2H, pyrrole H), 8.44 (t, J=6 Hz, 1H, CONH), 11.5 (br s, 1H, NH)
45	D	1.17 (d, J=7 Hz, 6H, 2CH ₃), 1.21 (t, J=7 Hz, 3H, CH ₃), 2.6-3.0 (m, 1H, CH), 3.93 (d, J=6 Hz, 2H, CH ₂ COO),
		4.12 (q, J=7 Hz, 2H, CH ₂), 6.68 (s, 1H, pyrrole H), 6.70 (s, 1H, pyrrole H), 8.36 (t, J=6 Hz, 1H, CONH),
		11.2 (br s, 1H,NH)
46	D	0.87 (d, J=7 Hz, 6H, 2CH ₃), 1.20 (t, J=7 Hz, 3H, CH ₃), 1.4-2.0 (m, 1H, CH), 2.26 (d, J=7 Hz, 2H, CH ₂),
		3.91 (d, J=6 Hz, 2H, CH ₂ COO), 4.11 (q, J=7 Hz, 2H, CH ₂), 6.62 (br s, 2H, pyrrole H),
		8.31 (t, J=6 Hz, 1H, CONH), 11.2 (br s, 1H, NH)
47	D.	0.6-1.8 (m, 11H, cyclohexane H), 1.20 (t, J=7 Hz, 3H, CH ₃), 2.26 (d, J=6 Hz, 2H, CH ₂),
		3.91 (d, J=6 Hz, 2H, CH ₂ COO), 4.11 (q, J=7 Hz, 2H, CH ₂), 6.60 (s, 1H, pyrrole H), 6.62 (s, 1H, pyrrole H),
		8.31 (t, J=6 Hz, 1H, CONH), 11.2 (br s, 1H, NH)
48	D	1.18 (t, J=7 Hz, 3H, CH ₃), 2.25 (s, 3H, CH ₃), 3.68 (s, 2H, CH ₂), 3.89 (d, J=6 Hz, 2H, CH ₂ COO),
		4.09 (q, J=7 Hz, 2H, CH ₂), 6.57 (br s, 1H, pyrrole H), 6.68 (br s, 1H, pyrrole H), 7.08 (s, 4H, ArH),
		8.34 (t, J=6 Hz, 1H, CONH), 11.3 (br s, 1H, NH)
49	D .	1.18 (t, J=7 Hz, 3H, CH ₃), 3.74 (s, 2H, CH ₂), 3.89 (d, J=6 Hz, 2H, CH ₂ COO), 4.09 (q, J=7 Hz, 2H, CH ₂),
		6.58 (br s, 1H, pyrrole H), 6.71 (br s, 1H, pyrrole H), 7.1-7.45 (m, 4H, ArH), 8.33 (t, J=6 Hz, 1H, CONH),
		11.3 (br s, 1H,NH)
50	D	1.19 (t, J=7 Hz, 3H, CH ₃), 3.85 (s, 2H, CH ₂), 3.89 (d, J=6 Hz, 2H, CH ₂ COO), 4.09 (q, J=7 Hz, 2H, CH ₂),
		6.59 (br s, 1H, pyrrole H), 6.77 (br s, 1H, pyrrole H), 7.43 (d, J=8 Hz, 2H, ArH), 7.64 (d, J=8 Hz, 2H, ArH),
		8.34 (t, J=5 Hz, 1H, CONH), 11.3 (br s, 1H, NH)
51	D	1.19 (t, J=7 Hz, 3H, CH ₃), 3.74 (s, 2H, CH ₂), 3.89 (d, J=6 Hz, 2H, CH ₂ COO), 4.09 (q, J=7 Hz, 2H, CH ₂),
		6.58 (br s, 1H, pyrrole H), 6.72 (br s, 1H, pyrrole H), 7.1-7.6 (m, 3H, ArH), 8.35 (t, J=6 Hz, 1H, CONH),
		11.3 (br s, 1H, NH)
52	С	1.28 (t, J=7 Hz, 3H, CH ₃), 3.75 (s, 2H, CH ₂), 4.16 (d, J=5 Hz, 2H, CH ₂ COO), 4.23 (q, J=7 Hz, 2H, CH ₂),
,		6.41 (br s, 1H, pyrrole H), 6.55 (t, J=5 Hz, 1H, CONH), 6.70 (br s, 1H, pyrrole H), 6.9-7.4 (m, 3H, ArH),
		10.95 (br s, 1H, NH)
53	D	1.18 (t, J=7 Hz, 3H, CH ₃), 3.69 (s, 2H, CH ₂), 3.89 (d, J=6 Hz, 2H, CH ₂ COO), 4.09 (q, J=7 Hz, 2H, CH ₂),
		6.59 (br s, 1H, pyrrole H), 6.70 (br s, 1H, pyrrole H), 7.12 (d, J=9 Hz, 2H, ArH), 7.29 (d, J=9 Hz, 2H, ArH),
		8.3 (t, J=6 Hz, 1H, CONH), 11.2 (br s, 1H, NH)
54	D .	1.22 (t, $J=7$ Hz, 3H, CH_3), 2.16 (s, 3H, CH_3), 2.23 (s, 3H, CH_3), 3.98 (d, $J=6$ Hz, 2H, CH_2COO),
		4.13 (q, J=7 Hz, 2H, CH ₂), 5.68 (s, 1H, pyrrole H), 7.48 (t, J=6 Hz, 1H, CONH), 10.9 (br s, 1H, NH)
55	D	1.20 (t, J=7 Hz, 3H, CH ₃), 1.83 (s, 3H, CH ₃), 2.10 (s, 3H, CH ₃), 2.15 (s, 3H, CH ₃),
		3.95 (d, J=6 Hz, 2H, CH ₂ COO), 4.10 (q, J=7 Hz, 2H, CH ₂), 7.48 (t, J=6 Hz, 1H, CONH), 10.7 (br s, 1H, NH)

56	С	1.04 (t, $J=7$ Hz, 3H, CH_3), 1.31 (t, $J=7$ Hz, 3H, CH_3), 2.19 (s, 3H, CH_3), 2.30 (s, 3H, CH_3),
		2.38 (q, J=7 Hz, 2H, CH ₂), 4.21 (d, J=5 Hz, 2H, CH ₂ COO), 4.25 (q, J=7 Hz, 2H, CH ₂),
		6.22 (t, J=5 Hz, 1H, CONH), 9.05 (br s, 1H, NH)
57	D	0.85 (t, J=7 Hz, 3H, CH ₃), 1.20 (t, J=7 Hz, 3H, CH ₃), 1.1-1.6 (m, 2H, CH ₂), 2.11 (s, 3H, CH ₃), 2.16 (s, 3H, CH ₃),
		2.26 (t, J=7 Hz, 2H, CH ₂), 3.95 (d, J=6 Hz, 2H, CH ₂ COO), 4.10 (q, J=7 Hz, 2H, CH ₂),
		7.48 (t, J=6 Hz, 1H, CONH), 10.7 (br s, 1H, NH)
58	D	0.84 (d, J=6 Hz, 6H, 2CH ₃), 1.20 (t, J=7 Hz, 2H, CH ₂), 1.3-1.7 (m, 1H, CH), 2.10 (s, 3H, CH ₃),
		2.14 (d, J=6 Hz, 2H, CH ₂), 2.15 (s, 3H, CH ₃), 3.95 (d, J=6 Hz, 2H, CH ₂ COO), 4.11 (q, J=7 Hz, 2H, CH ₂),
		10.7 (br s, 1H, NH)
59	D	1.20 (t, J=7 Hz, 3H, CH ₃), 2.10 (s, 3H, CH ₃), 2.12 (s, 3H, CH ₃), 3.66 (s, 2H, CH ₂), 3.95 (d, J=6 Hz, 2H,
		$CH_2COO)$, 4.10 (q, J=7 Hz, 2H, CH_2), 6.9-7.2 (m, 4H, ArH), 7.53 (t, J=6 Hz, 1H, CONH), 10.9 (br s, 1H, NH)
60	D	1.20 (t, J=7 Hz, 3H, CH ₃), 2.09 (s, 3H, CH ₃), 2.11 (s, 3H, CH ₃), 3.64 (s, 2H, CH ₂),
		3.95 (d, J=6 Hz, 2H, CH ₂ COO), 4.11 (q, J=7 Hz, 2H, CH ₂), 6.8-7.6 (m, 3H, ArH), 11.9 (br s, 1H, NH)

Measurement solvents. C: CDCl₃; D: DMSO-d₆.

Table XII. Physical data for ethyl acetate derivatives of pyrrolo[1,2-c]imidazole.

Compd	R ₄	mp (°C)	Recryst	Yield (%)	Formula	Analysis		
R,=R ₂ =H ; X=Y=O								
61	Н	126-127	Α	82	C ₁₀ H ₁₀ N ₂ O ₄	C, H, N		
					.1/8H ₂ O			
62	(CH₃)₂CH	96-97	В	52	$C_{13}H_{16}N_2O_4$	C, H, N		
63	(CH ₃) ₂ CHCH ₂	99-100	С	73	$C_{14}H_{18}N_2O_4$	C, H, N		
64	cyclohexylmethyl	66.5-67.5	D	78	$C_{17}H_{22}N_2O_4$	C, H, N		
65	4-CH ₃ -C ₆ H ₄ CH ₂	83-84	С	65	C ₁₈ H ₁₈ N ₂ O ₄	C, H, N		
66	4-CI-C ₆ H ₄ CH ₂	104-105	E	79	C ₁₇ H ₁₅ CIN ₂ O ₄	C, H, N		
67	4-CF ₃ -C ₆ H ₄ CH ₂	138.5-140	E	59	$C_{18}H_{15}F_3N_2O_4$	C, H, N		
68	4-Br,2-F-C ₆ H ₃ CH ₂	134-135	E	79	$C_{17}H_{14}BrFN_2O_4$	C, H, N		
69	3,4-(Cl) ₂ -C ₆ H ₃ CH ₂	160.5-161.5	E	7.5	$C_{17}H_{14}CI_2N_2O_4$	C, H, N		
70	4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂	70.5-71	E	79	$C_{21}H_{24}N_2O_4$	C, H, N		
$R_1=R_2=CH_3$; $X=Y=O$								
71	Н	90-92	E	25	$C_{12}H_{14}N_2O_4$	C, H, N		
			•		.1/4H₂O			
72	CH ₃	100-101	E	29	C ₁₃ H ₁₆ N ₂ O ₄	C, H, N		
73	C ₂ H ₅	104-105	С	10	C ₁₄ H ₁₈ N ₂ O ₄	C, H, N		
74	CH ₃ CH ₂ CH ₂	102-105	Е	26	$C_{15}H_{20}N_2O_4$	C, H, N		
$R_1 = R_2 = C$	CH ₃ ; X=Y=O							
75	(CH ₃) ₂ CHCH ₂	94-95	E	23	$C_{16}H_{22}N_2O_4$	C, H, N		
76	4-F-C ₆ H ₄ CH ₂	148-149	E	23	$C_{19}H_{19}FN_2O_4$	C, H, N		
77	4-Br,2-F-C ₆ H ₃ CH ₂	132-134	Ε	18	C ₁₉ H ₁₈ BrFN ₂ O ₄	C, H, N		
	I ; X=O, Y=S	oil	В	65	C H N O S			
95	H	70-71	В	76	$C_{10}H_{10}N_2O_3S$ $C_{13}H_{16}N_2O_3S$	C, H, N		
96	(CH ₃)₂CH		D	78 78	C ₁₃ H ₁₈ N ₂ O ₃ S	C, H, N		
97	(CH ₃) ₂ CHCH ₂	116.5-117						
98	cyclohexylmethyl	92-93	D	56	C ₁₇ H ₂₂ N ₂ O ₃ S .1/16C ₆ H ₁₄ ^a	C, H, N		
99	4-CH ₃ -C ₆ H ₄ CH ₂	77-78	D	48	C ₁₈ H ₁₈ N ₂ O ₃ S	C, H, N		

Table XII. Continued.

100	4-CI-C ₆ H ₄ CH ₂	95.5-96.5	F	82	C ₁₇ H ₁₅ CIN ₂ O ₃ S C, H, N
101	4-CF ₃ -C ₆ H ₄ CH ₂	141-143	G	37	C ₁₈ H ₁₅ F ₃ N ₂ O ₃ S C, H, N
102	4-Br,2-F-C ₆ H ₃ CH ₂	126.5-127.5	G	40	C ₁₇ H ₁₄ BrFN ₂ O ₃ S C, H, N,
103	3,4-(Cl) ₂ -C ₆ H ₃ CH ₂	153.5-154.5	Н	57	C ₁₇ H ₁₄ Cl ₂ N ₂ O ₃ S C, H, N,
104	4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂	103-104	G	54	C ₂₁ H ₂₄ N ₂ O ₃ S C, H, N
R ₁ =R ₂ =0	CH ₃ ; X=O, Y=S				
105	Н	115-116	G	66	C ₁₂ H ₁₄ N ₂ O ₃ S C, H, N
106	CH ₃	118-120	G	50	C ₁₃ H ₁₆ N ₂ O ₃ S C, H, N
107	C_2H_5	119-120	В	70	C ₁₄ H ₁₈ N ₂ O ₃ S C, H, N,
108	CH ₃ CH ₂ CH ₂	103-104	G	63	C ₁₅ H ₂₀ N ₂ O ₃ S C, H, N
109	(CH ₃) ₂ CHCH ₂	98-100	G	56	C ₁₆ H ₂₂ N ₂ O ₃ S C, H, N
110	4-F-C ₆ H ₄ CH ₂	154.5-156	G	69	C ₁₉ H ₁₉ FN ₂ O ₃ S C, H, N
					.1/4H₂O
111	4-Br,2-F-C ₆ H ₃ CH ₂	146-148.5	1	45	C ₁₉ H ₁₈ BrFN ₂ O ₃ S C, H, N
R ₁ =R ₂ =1	Η; X=Y=S				
129	Н	50-52	В	40	C ₁₀ H ₁₀ N ₂ O ₂ S ₂ C, H, N
130	$(CH_3)_2CH$	oil	В	36	C ₁₃ H ₁₆ N ₂ O ₂ S ₂
131	(CH ₃) ₂ CHCH ₂	102-103	Đ	50	C ₁₄ H ₁₈ N ₂ O ₂ S ₂ C, H, N
132	cyclohexylmethyl	98-100	В	41	C ₁₇ H ₂₂ N ₂ O ₂ S ₂ C, H, N
133	4-CH ₃ -C ₆ H ₄ CH ₂	oil	В	46	C ₁₈ H ₁₈ N ₂ O ₂ S ₂ C, H, N
134	4-CI-C ₆ H ₄ CH ₂	69-73	В	49	$C_{17}H_{15}CIN_2O_2S_2C$, H, N
					.1/4H ₂ O
135	4-CF ₃ -C ₆ H ₄ CH ₂	86-87	F	24	C ₁₈ H ₁₅ F ₃ N ₂ O ₂ S ₂ C, H, N
136	4-Br,2-F-C ₆ H ₃ CH ₂	96-98	G	49	C ₁₇ H ₁₄ BrFN ₂ O ₂ S ₂ C, H, N
137	3,4-(CI) ₂ -C ₆ H ₃ CH ₂	117.5-118.5	F	48	${\rm C_{17}H_{14}Cl_2N_2O_2S_2\ C, H, N}$
138	4-(CH ₃) ₃ C-C ₆ H ₄ CH ₂	67-70	D	5	C ₂₁ H ₂₄ N ₂ O ₂ S ₂ C, H, N
R ₁ =R ₂ =0	CH ₃ ; X=Y=S				
139	C₂H₅	142-144	В	51	C ₁₄ H ₁₈ N ₂ O ₂ S ₂ C, H, N
					.1/16CHCl ₃ ^a

Recrystallization solvents. A: washed with *n*-hexane; B: purified by column chromatography on silica gel; C: EtOH/H₂O; D: *n*-hexane; E: EtOH; F: *iso*-Pr₂O/*n*-hexane; G: *iso*-Pr₂O; H: CH₂Cl₂/*iso*-Pr₂O; I: *iso*-Pr₂O/CHCl₃; adetermined by NMR analysis

Table XIII. Physical data for ethyl acetate derivatives of pyrrolo[1,2-c]imidazole.

Compd	Solvent	¹H-NMR δ ppm
61	D	1.21 (t, J=7 Hz, 3H, CH ₃), 4.18 (q, J=7 Hz, 2H, CH ₂), 4.37 (s, 2H, CH ₂ COO), 6.61 (t, J=3 Hz, pyrrole H),
		7.05 (d, J=3 Hz, 1H, pyrrole H), 7.69 (d, J=3 Hz, 1H, pyrrole H)
62	D	1.19 (d, J=7 Hz, 6H, 2CH ₃), 1.21 (t, J=7 Hz, 3H, CH ₃), 2.6-3.0 (m, 1H, CH), 4.17 (q, J=7 Hz, 2H, CH ₂),
		4.34 (s, 2H, CH ₂ COO), 7.02 (s, 1H, pyrrole H), 7.47 (s, 1H, pyrrole H)
63	С	0.93 (d, J=7 Hz, 6H, 2CH ₃), 1.29 (t, J=7 Hz, 3H, CH ₃), 1.6-2.0 (m, 1H, CH), 2.36 (d, J=7 Hz, 2H, CH ₂),
		4.24 (q, J=7 Hz, 2H, CH ₂), 4.32 (s, 2H, CH ₂ COO), 6.66 (s, 1H, pyrrole H), 7.04 (s, 1H, pyrrole H)
64	D	0.6-2.0 (m, 11H, cyclohexane H), 1.21 (t, J=7 Hz, 3H, CH ₃), 2.34 (d, J=6 Hz, 2H, CH ₂),
		4.17 (q, J=7 Hz, 2H, CH ₂), 4.33 (s, 2H, CH ₂ COO), 6.90 (s, 1H, pyrrole H), 7.44 (s, 1H, pyrrole H)
65	С	1.28 (t, J=7 Hz, 3H, CH ₃), 2.33 (s, 3H, CH ₃), 3.79 (s, 2H, CH ₂), 4.23 (q, J=7 Hz, 2H, CH ₂), 4.30 (s, 2H, CH ₂ COO),
		6.66 (s, 1H, pyrrole H), 7.01 (s, 1H, pyrrole H), 7.11 (s, 4H, ArH)
66	D	1.20 (t, J=7 Hz, 3H, CH ₃), 3.82 (s, 2H, CH ₂), 4.16 (q, J=7 Hz, 2H, CH ₂), 4.33 (s, 2H, CH ₂ COO),
		6.91 (s, 1H, pyrrole H), 7.1-7.45 (m, 4H, ArH), 7.52 (s, 1H, pyrrole H)
67	D	1.20 (t, J=7 Hz, 3H, CH ₃), 3.94 (s, 2H, CH ₂), 4.16 (q, J=7 Hz, 2H, CH ₂), 4.33 (s, 2H, CH ₂ COO),
		7.50 (d, J=8 Hz, 2H, ArH), 7.58 (s, 1H, pyrrole H), 7.67 (d, J=8 Hz, 2H, ArH)
68,	D	1.20 (t, J=7 Hz, 3H, CH ₃), 3.83 (s, 2H, CH ₂), 4.16 (q, J=7 Hz, 2H, CH ₂), 4.33 (s, 2H, CH ₂ COO),
		6.90 (s, 1H, pyrrole H), 7.50 (s, 1H, pyrrole H), 7.15-7.6 (m, 3H, ArH)
69	С	1.29 (t, J=7 Hz, 3H, CH ₃), 3.80 (s, 2H, CH ₂), 4.24 (q, J=7 Hz, 2H, CH ₂), 4.32 (s, 2H, CH ₂ COO),
		6.63 (s, 1H, pyrrole H), 6.9-7.5 (m, 3H, ArH), 7.05 (s, 1H, pyrrole H)
70	D	1.20 (t, J=7 Hz, 3H, CH_3), 1.25 (s, 9H, 3 CH_3), 3.77 (s, 2H, CH_2), 4.16 (q, J=7 Hz, 2H, CH_2), 4.33 (s, 2H, CH_2),
÷		6.91 (s, 1H, pyrrole H), 7.18 (d, J=8 Hz, 2H, ArH), 7.32 (d, J=8 Hz, 2H, ArH), 7.51 (s, 1H, pyrrole H)
71	D	1.21(t, J=7 Hz, 3H, CH ₃), 2.19 (s, 3H, CH ₃), 2.39 (s, 3H, CH ₃), 4.17 (q, J=7 Hz, 2H, CH ₂), 4.29 (s, 2H, CH ₂ COO),
		6.17 (s, 1H, pyrrole H)
72	D	1.21 (t, J=7 Hz, 3H, CH ₃), 1.90 (s, 3H, CH ₃), 2.13 (s, 3H, CH ₃), 2.34 (s, 3H, CH ₃), 4.16 (q, J=7 Hz, 2H, CH ₂),
		4.28 (s, 2H, CH₂COO)
73	D	1.03 (t, J=7 Hz, 3H, CH ₃), 1.21 (t, J=7 Hz, 3H, CH ₃), 2.18 (s, 3H, CH ₃), 2.34 (q, J=7 Hz, 2H, CH ₂),
		2.36 (s, 3H, CH ₃), 4.16 (q, J=7 Hz, 2H, CH ₂), 4.28 (s, 2H, CH ₂ COO)
74	D	0.87 (t, $J=7$ Hz, $3H$, CH_3), 1.20 (t, $J=7$ Hz, $3H$, CH_3), $1.2-1.7$ (m, $2H$, CH_2), 2.15 (s, $3H$, CH_3),
		2.79 (t, J=7 Hz, 2H, CH ₂), 2.34 (s, 3H, CH ₃), 4.16 (q, J=7 Hz, 2H, CH ₂), 4.27 (s, 2H, CH ₂ COO)
75	D	0.88 (d, J=7 Hz, 6H, 2CH ₃), 1.21 (t, J=7 Hz, 3H, CH ₃), 1.5-1.9 (m, 1H, CH), 2.16 (s, 3H, CH ₃),
		2.23 (d, J=7 Hz, 2H, CH ₂), 2.35 (s, 3H, CH ₃), 4.17 (q, J=7 Hz, 2H, CH ₂), 4.28 (s, 2H, CH ₂ COO)
76	D	1.22 (t, J=7 Hz, 3H, CH ₃), 2.06 (s, 3H, CH ₃), 2.41 (s, 3H, CH ₃), 3.77 (s, 2H, CH ₂), 4.17 (q, J=7 Hz, 2H, CH ₂),
		4.30 (s, 2H, CH ₂ COO), 6.9- 7.35 (m, 4H, ArH)

Table XIII. Continued.

77	D	1.23 (t, J=7 Hz, 3H, CH ₃), 2.08 (s, 3H, CH ₃), 2.40 (s, 3H, CH ₃), 3.77 (s, 2H, CH ₂), 4.18 (q, J=7 Hz, 2H, CH ₂),
		4.31 (s, 2H, CH ₂ COO), 7.0-7.6 (m, 3H, ArH)
95	D	1.20 (t, J=7 Hz, 3H, CH ₃), 4.17 (q, J=7 Hz, 2H, CH ₂), 4.65 (s, 2H, CH ₂ COO), 6.59 (t, J=3 Hz, 1H, pyrrole H),
		7.15 (d, J=3 Hz, 1H, pyrrole H), 7.68 (d, J=3 Hz, 1H, pyrrole H)
96	D	1.19 (d, J=7 Hz, 6H, 2CH ₃), 1.20 (t, J=7 Hz, 3H, CH ₃), 2.6-3.0 (m, 1H, CH), 4.16 (q, J=7 Hz, 2H, CH ₂),
		4.61 (s, 2H, CH ₂ COO), 7.15 (s, 1H, pyrrole H), 7.48 (s, 1H, pyrrole H)
97	С	0.93 (d, J=7 Hz, 6H, 2CH ₃), 1.29 (t, J=7 Hz, 3H, CH ₃), 1.6-2.0 (m, 1H, CH), 2.35 (d, J=7 Hz, 2H, CH ₂),
		4.24 (q, J=7 Hz, 2H, CH ₂), 4.62 (s, 2H, CH ₂ COO), 6.80 (s, 1H, pyrrole H), 6.94 (s, 1H, pyrrole H)
98	С	0.6-2.0 (m, 11H, cyclohexane H), 1.28 (t, J=7 Hz, 3H, CH ₃), 2.35 (d, J=6 Hz, 2H, CH ₂),
		4.23 (q, J=7 Hz, 2H, CH ₂), 4.61 (s, 2H, CH ₂ COO), 6.80 (s, 1H, pyrrole H), 6.94 (s, 1H, pyrrole H)
99	С	1.27 (t, $J=7$ Hz, 3H, CH_3), 2.33 (s, 3H, CH_3), 3.78 (s, 2H, CH_2), 4.22 (q, $J=7$ Hz, 2H, CH_2), 4.60 (s, 2H, CH_2 COO),
		6.79 (s, 1H, pyrrole H), 6.93 (s, 1H, pyrrole H), 7.11 (s, 4H, ArH)
100	D	1.19 (t, J=7 Hz, 3H, CH_3), 3.82 (s, 2H, CH_2), 4.16 (q, J=7 Hz, 2H, CH_2), 4.61 (s, 2H, CH_2COO),
		7.02 (s, 1H, pyrrole H), 7.3-7.5 (m, 4H, ArH), 7.53 (s, 1H, pyrrole H)
101	D	1.19 (t, J=7 Hz, 3H, CH_3), 3.93 (s, 2H, CH_2), 4.16 (q, J=7 Hz, 2H, CH_2), 4.61 (s, 2H, CH_2COO),
		7.06 (s, 1H, pyrrole H), 7.53 (d, J=8 Hz, 2H, ArH), 7.57 (s, 1H, pyrrole H), 7.68 (d, J=8 Hz, 2H, ArH)
102	D	1.19 (t, J=7 Hz, 3H, CH ₃), 3.83 (s, 2H, CH ₂), 4.15 (q, J=7 Hz, 2H, CH ₂), 4.61 (s, 2H, CH ₂ COO),
		6.99 (s, 1H, pyrrole H), 7.15-7.6 (m, 3H, ArH), 7.51 (s, 1H, pyrrole H)
103	С	1.28 (t, J=7 Hz, 3H, CH ₃), 3.79 (s, 2H, CH ₂), 4.23 (q, J=7 Hz, 2H, CH ₂), 4.62 (s, 2H, CH ₂ COO),
		6.76 (s, 1H, pyrrole H), 6.97 (s, 1H, pyrrole H), 6.9-7.5 (m, 3H, ArH)
104	D	1.19 (t, J=7 Hz, 3H, CH ₃), 1.25 (s, 9H, 3CH ₃), 3.77 (s, 2H, CH ₂), 4.15 (q, J=7 Hz, 2H, CH ₂),
		4.61 (s, 2H, CH ₂ COO), 7.00 (s, 1H, pyrrole H), 7.19 (d, J=9 Hz, 2H, ArH), 7.33 (d, J=9 Hz, 2H, ArH),
		7.51 (s, 1H, pyrrole H)
105	D	1.20 (t, J=7 Hz, 3H, CH ₃), 2.28 (s, 3H, CH ₃), 2.38 (s, 3H, CH ₃), 4.16 (q, J=7 Hz, 2H, CH ₂),
		4.59 (s, 2H, CH ₂ COO), 6.24 (s, 1H, pyrrole H)
106	D	1.20 (t, $J=7$ Hz, 3H, CH_3), 1.93 (s, 3H, CH_3), 2.23 (s, 3H, CH_3), 2.32 (s, 3H, CH_3), 4.16 (q, $J=7$ Hz, 2H, CH_2),
		4.57 (s, 2H, CH ₂ COO)
107	D	1.04 (t, $J = 7 Hz$, 3H, CH_3), 1.20 (t, $J = 7 Hz$, 3H, CH_3), 2.28 (s, 3H, CH_3), 2.35 (s, 3H, CH_3),
		2.35 (t, J= Hz, 2H, CH ₂), 4.16 (q, J=7 Hz, 2H, CH ₂), 4.58 (s, 2H, CH ₂ COO)
108	D	0.89 (t, $J=7$ Hz, 3H, CH_3), 1.20 (t, $J=7$ Hz, 3H, CH_3), 1.2-1.7 (m, 2H, CH_2), 2.26 (s, 3H, CH_3), 2.34 (s, 3H, CH_3),
		2.34 (t, J=7 Hz, 2H, CH ₂), 4.16 (q, J=7 Hz, 2H, CH ₂), 4.57 (s, 2H, CH ₂ COO)
109	Đ	0.89 (d, J=7 Hz, 6H, 2CH ₃), 1.20 (t, J=7 Hz, 3H, CH ₃), 1.5-1.9 (m, 1H, CH), 2.26 (s, 3H, CH ₃),
		2.26 (d, J=7 Hz, 2H, CH ₂), 2.34 (s, 3H, CH ₃), 4.16 (q, J=7 Hz, 2H, CH ₂), 4.58 (s, 2H, CH ₂ COO)
110	D	1.20 (t, J=7 Hz, 3H, CH ₃), 2.15 (s, 3H, CH ₃), 2.39 (s, 3H, CH ₃), 3.79 (s, 2H, CH ₂), 4.16 (q, J=7 Hz, 2H, CH ₂),
		4.58 (s, 2H, CH ₂ COO), 6.9-7.35 (m, 4H, ArH)

Table XIII. Continued.

111	D	1.20 (t, J=7 Hz, 3H, CH ₃), 2.17 (s, 3H, CH ₃), 2.38 (s, 3H, CH ₃), 3.78 (s, 2H, CH ₂), 4.16 (q, J=7 Hz, 2H, CH ₂),
		4.59 (s, 2H, CH ₂ COO), 7.0-7.6 (m, 3H, ArH)
129	D	1.20 (t, J=7 Hz, 3H, CH ₃), 4.17 (q, J=7 Hz, 2H, CH ₂), 4.92 (s, 2H, CH ₂ COO), 6.59 (t, J=3 Hz, 1H, pyrrole H),
		7.21 (d, J=3 Hz, 1H, pyrrole H), 7.69 (d, J=3 Hz, 1H, pyrrole H)
130	D	1.19 (d, J=7 Hz, 6H, 2CH ₃), 1.20 (t, J=7 Hz, 3H, CH ₃), 2.6-3.0 (m, 1H, CH), 4.16 (q, J=7 Hz, 2H, CH ₂),
		4.88 (s, 2H, CH ₂ COO), 7.20 (s, 1H, pyrrole H), 7.44 (s, 1H, pyrrole H)
131	С	0.94 (d, J=7 Hz, 6H, 2CH $_3$), 1.28 (t, J=7 Hz, 3H, CH $_3$), 1.6-2.0 (m, 1H, CH), 2.34 (d, J=7 Hz, 2H, CH $_2$),
		4.24 (q, J=7 Hz, 2H, CH ₂), 4.92 (s, 2H, CH ₂ COO), 6.79 (s, 1H, pyrrole H), 7.08 (s, 1H, pyrrole H)
132	С	0.6-2.0 (m, 11H, cyclohexane H), 1.28 (t, J=7 Hz, 3H, CH ₃), 2.34 (d, J=6 Hz, 2H, CH ₂),
		4.23 (q, J=7 Hz, 2H, CH ₂), 4.92 (s, 2H, CH ₂ COO), 6.78 (s, 1H, pyrrole H), 7.06 (s, 1H, pyrrole H)
133	C	1.27 (t, J=7 Hz, 3H, CH_3), 2.33 (s, 3H, CH_3), 3.77 (s, 2H, CH_2), 4.22 (q, J=7 Hz, 2H, CH_2), 4.90 (s, 2H, CH_2 COO),
		6.76 (s, 1H, pyrrole H), 6.9-7.2 (m, 4H, ArH), 7.06 (s, 1H, pyrrole H)
134	С	1.28 (t, $J=7$ Hz, 3H, CH_3), 3.80 (s, 2H, CH_2), 4.23 (q, $J=7$ Hz, 2H, CH_2), 4.91 (s, 2H, CH_2 COO),
		6.74 (s, 1H, pyrrole H), 7.06 (s, 1H, pyrrole H), 7:0-7.4 (m, 4H, ArH)
135	D	1.19 (t, $J=7$ Hz, 3H, CH_3), 3.94 (s, 2H, CH_2), 4.16 (q, $J=7$ Hz, 2H, CH_2), 4.89 (s, 2H, CH_2 COO),
		7.13 (s, 1H, pyrrole H), 7.54 (d, J=8 Hz, 2H, ArH), 7.61 (s, 1H, pyrrole H), 7.68 (d, J=8 Hz, 2H, ArH)
136	D	1.18 (t, J=7 Hz, 3H, CH ₃), 3.85 (s, 2H, CH ₂), 4.89 (s, 2H, CH ₂ COO), 7.06 (s, 1H, pyrrole H),
		7.2-7.65 (m, 3H, ArH), 7.52 (s, 1H, pyrrole H)
137	С	1.28 (t, J=7 Hz, 3H, CH ₃), 3.79 (s, 2H, CH ₂), 4.23 (q, J=7 Hz, 2H, CH ₂), 4.92 (s, 2H, CH ₂ COO),
		6.74 (s, 1H, pyrrole H), 6.9-7.5 (m, 3H, ArH)
138	Ď	1.18 (t, J=7 Hz, 3H, CH ₃), 1.26 (s, 9H, 3CH ₃), 3.78 (s, 2H, CH ₂), 4.15 (q, J=7 Hz, 2H, CH ₂),
		4.89 (s, 2H, CH ₂ COO), 7.08 (s, 1H, pyrrole H), 7.21 (d, J=9 Hz, 2H, ArH), 7.34 (d, J=9 Hz, 2H, ArH),
		7.53 (s, 1H, pyrrole H)
139	D	1.07 (t, J=8 Hz, 3H, CH ₃), 1.28 (t, J=7 Hz, 3H, CH ₃), 2.30 (s, 3H, CH ₃), 2.40 (q, J=8 Hz, 2H, CH ₂),
		2.48 (s, 3H, CH ₃), 4.17 (q, J=7 Hz, 2H, CH ₂), 4.91 (s, 2H, CH ₂ COO)

Measurement solvents. C: CDCl₃; D: DMSO-d₆.

After concentration, the residue was dissolved in ethyl ether (150 ml), washed with 1 N NaOH solution and saturated NaCl solution, dried over Na₂SO₄ and concentrated. The residue was distilled under reduced pressure to give a yellow oil (22, 13.0 g, 96%, bp: 108–112°C/0.04 mmHg). $^1\mathrm{H}\text{-NMR}$ (CDCl₃) &: 0.89 (d, J=6 Hz, 6H, 2CH₃), 1.34 (t, J=7 Hz, 3H, CH₃), 1.5–2.0 (m, 1H, CH), 2.32 (d, J=7 Hz, 2H, CH₂), 4.31 (q, J=7 Hz, 2H, CH₂), 6.73 (br s, 2H, pyrrole H), 9.4 (br s, 1H, NH). MS: 195 (M+). Anal $C_{11}H_{17}\mathrm{NO}_2 \bullet 1/8H_2\mathrm{O}$ (C, H, N).

General procedure for the synthesis of 32-43

The following procedure for the synthesis of 4-isobutyl-2-pyrrolecarboxylic acid 32 is representative. The other

compounds, 33–43, were obtained similarly. Physical data for these compounds are summarized in tables VIII and IX. 2-Pyrrolecarboxylic acid was commercially available. 4-Isopropyl-2-pyrrolecarboxylic acid, 3,5-dimethyl-2-pyrrolecarboxylic acid and 4-ethyl-3,5-dimethyl-2-pyrrolecarboxylic acid were synthesized by a previously described method [14–17].

4-Isobutyl-2-pyrrolecarboxylic acid 32 (4, $R_1 = R_2 = H$, $R_4 = (CH_3)_2CHCH_2$) A solution of ethyl 4-isobutyl-2-pyrrolecarboxylate (22, 3.50 g, 17.9 mmol) and 2 N NaOH (17.9 ml, 35.8 mmol) in EtOH (20 ml) were heated under reflux for 2 h. After concentration, H_2O (30 ml) was added to the residue and acidified with

concentrated HCl. The solid was collected on a filter, washed H_2O and recrystallized from dichloromethane (CH₂C1₂)/MeOH/isopropyl ether(iso-Pr₂O) to give colorless needles (32, 2.94 g, 98%, mp: 177-178.5°C with decomp). ¹H-NMR (DMSO- d_6) δ : 0.85 (d, J = 7 Hz, 6H, 2CH₃), 1.4–2.0 (m, 1H, CH), 2.25 (d, J = 7 Hz, 2H, CH₂), 6.53 (br s, 1H, pyrrole H), 6.72 (br s, 1H, pyrrole H), 11.4 (br s, 1H, NH), 12.05 (br s, 1H, COOH). MS: 167 (M+). Anal C₉H₁₃NO₂ • 1/16H₂O (C, H N).

General procedure for the synthesis of 44–60

The following procedure for the synthesis of ethyl 4-isobutyl-2-pyrrolecarbonylaminoacetate 46 is representative. The other compounds, 44, 45, 47-60, were obtained similarly. Physical data for these compounds are summarized in tables X and XI.

Ethyl 4-isobutyl-2-pyrrolecarbonylaminoacetate 46 $(5, R_1 = R_2 = H, R_4 = (CH_3)_2CHCH_2)$

Diethyl phosphorocyanidate (4.39 g, 24.2 mmol) was added to 4-isobutyl-2-pyrrolecarboxylic acid (32, 2.70 g, 16.1 mmol) and glycine ethyl ester (4.99 g, 48.4 mmol) in dimethyl formamide (10 ml) under ice cooling, followed by the addition of triethylamine (2.45 g, 24.2 mmol). The mixture was stirred at room temperature (rt) for 24 h. After concentration, H₂O (50 ml) was added to the residue, which was then stirred at rt for 30 min. A white solid was collected on a filter, washed with H₂O and recrystallized from CH₂C1₂/iso-Pr₂O to give colorless needles (46, 3.98 g, 98%, mp: 136.5-138°C). ¹H-NMR $(DMSO-d_6)$: $\delta 0.87$ (d, J = 7 Hz, 6H, $2CH_3$), 1.20 (t, J = 7 Hz, 3H, CH₃), 1.4–2.0 (m, 1H, CH), 2.26 (d, J = 7 Hz, 2H, CH₂), 3.91 (d, J = 6 Hz, 2H, CH₂COO), 4.11 (q, J = 7 Hz, 2H, CH₂), 6.62 (br s, 2H, pyrrole H), 8.31 (t, J = 6 Hz, 1H, CONH), 11.2 (br s, 1H, NH). MS: 252 (M+). Anal $C_{13}H_{20}N_2O_3$ (C, H, N).

General procedure for the synthesis of 61-77

The following procedure for the synthesis of 2-ethoxycarbonylmethyl-6-isobutyl-1,3(2H)-dioxo-1H-pyrrolo[1,2-c]imidazole 63 is representative. The other compounds, 61, 62, 64–77, were obtained in a similar manner. Physical data for these compounds are summarized in tables XII and XIII.

2-Ethoxycarbonylmethyl-6-isobutyl-1,3(2H)-dioxo-1Hpyrrolo[1,2-c]imidazole 63

 $(6, R_1 = R_2 = H, R_4 = (CH_3)_2 CHCH_2)$

A mixture of 1,1'-carbonyldiimidazole (4.63 g, 28.5 mmol) and ethyl 4-isobutyl-2-pyrrolecarbonylaminoacetate (46, 3.60 g, 14.3 mmol) was heated at 150°C for 40 min. After cooling, EtOH (30 ml) and H₂O (30 ml) were added to the reaction mixture and kept at 4°C for 4 h. The solid was collected on a filter, washed with 50% EtOH and recrystallized from 60% EtOH to give colorless needles (63, 2.89 g, 73%, mp: 99–100°C). 1 H-NMR (CDCl₃) δ : 0.93 (d, J =7 Hz, 6H, 2CH₃), 1.29 (t, J = 7 Hz, 3H, CH₃), 1.6–2.0 (m, 1H, CH), 2.36 (d, J = 7 Hz, 2H, CH₂), 4.24 (q, J = 7 Hz, 2H, CH₂), 4.32 (s, 2H, CH₂COO), 6.66 (s, 1H, pyrrole H), 7.04 (s, 1H, pyrrole H).MS: 278 (M+). Anal C₁₄H₁₈N₂O₄ (C, H, N).

General procedure for the synthesis of 78–94, 112–128, 140-150

The following procedure for the synthesis of 2-carboxymethyl-6-isobutyl-1,3(2H)-dioxo-1H-pyrrolo[1,2-c]imidazole **80** representative. The other compounds, 78, 79, 81-94, 112-128, 140–150, were obtained in a similar manner. Physical data for these compounds are summarized in tables I and II.

2-Carboxymethyl-6-isobutyl-1,3(2H)-dioxo-1H-pyrrolo[1,2c]imidazole 80

(7, $R_1 = R_2 = H$, $R_4 = (CH_3)_2CHCH_2$) A mixture of 2-ethoxycarbonylmethyl-6-isobutyl-1,3(2*H*)dioxo-1H-pyrrolo[1,2-c]imidazole (63, 0.70 g, 2.52 mmol) and concentrated HCl (5 ml) in acetic acid (AcOH)(15 ml) was heated under reflux for 3 h. After addition of concentrated HCl (3 ml), heating of the mixture was continued under reflux for 2 h. Water (20 ml) was added to the reaction mixture and the insoluble material was collected on a filter to give colorless needles (80, 0.548 g, 87%, mp: 183.5–184°C). 1 H-NMR (DMSO–d₆) δ : 0.88 (d, J = 7 Hz, 6H, 2CH₃), 1.6–2.0 (m, 1H, CH), 2.34 (d, J = 7 Hz, 2H, CH₂), 4.22 (s, 2H, CH₂COO), 6.90 (s, 1H, pyrrole H), 7.45 (s, 1H, pyrrole H), 13.3 (br s, 1H, COOH). MS: 250 (M+). Anal C₁₂H₁₄N₂O₄ (C, H, N).

General procedure for the synthesis of **95–111**

The following procedure for the synthesis of 2-ethoxycarbonylmethyl-6-isobutyl-3-oxo-1(2H)-thioxo-1H-pyrrolo[1,2climidazole 97 is representative. The other compounds, 95, 96, 98-111, were obtained in a similar manner. Physical data for these compounds are summarized in tables XII and XIII.

2-Ethoxycarbonylmethyl-6-isobutyl-3-oxo-1(2H)-thioxo-1Hpyrrolo[1,2-c]imidazole 97

(8, $R_1 = R_2 = H$, $R_4 = (CH_3)_2CHCH_2$) A mixture of 2-ethoxycarbonylmethyl-6-isobutyl-1,3(2*H*)dioxo-1H-pyrrolo[1,2-c]imidazole (63, 2.00 g, 7.19 mmol) and phosphorus pentasulfide (3.99 g, 18.0 mmol) in dioxane (40 ml) were heated under reflux for 8 h. After cooling, the supernatant was separated by decantation and concentrated. The residue was chromatographed on a silica gel column (150 g, eluent, $CHCl_3/hexane = 2.5:1$). The eluate was recrystallized from *n*-hexane to give yellow needles (97, 1.65 g, 78%, mp: 116.5–117°C). ¹H-NMR (CDCl₃) δ : 0.93 (d, J = 7 Hz, 6H, 2CH₃), 1.29 (t, J = 7 Hz, 3H, CH₃), 1.6–2.0 (m, 1H, CH), 2.35 (d, J = 7 Hz, 2H, CH₂), 4.24 (q, J = 7 Hz, 2H, CH₂), 4.62 (s,2H, CH₂COO), 6.80 (s, 1H, pyrrole H), 6.94 (s, 1H, pyrrole H). Anal $C_{14}H_{18}N_2O_3S$ (C, H, N).

General procedure for the synthesis of 129–139

The following procedure for the synthesis of 2-ethoxycarbonylmethyl-6-isobutyl-1,3(2H)-dithioxo-1H-pyrrolo[1,2-c]imidazole 131 is representative. The other compounds, 129, 130, 132-139, were obtained similarly. Physical data of these compounds are summarized in tables XII and XIII.

2-Ethoxycarbonylmethyl-6-isobutyl-1,3(2H)-dithioxo-1Hpyrrolo[1,2-c]imidazole 131

 $(10, R_1 = R_2 = H, R_4 = (CH_3)_2 CHCH_2)$

A mixture of 2-ethoxycarbonylmethyl-6-isobutyl-1,3(2H)dioxo-1H-pyrrolo[1,2-c]imidazole (63, 2.00 g, 7.19 mmol) and phosphorus pentasulfide (8.00 g, 36.0 mmol) in xylene (50 ml) was heated under reflux for 24 h. The supernatant was separated by decantation and concentrated. The residue was chromatographed on a silica gel column (150 g, eluent, CHCl₃/hexane = 1.5:1). The eluate was recrystallized from nhexane to give a reddish-orange powder (131, 1.11 g, 50%, mp: 102-103°C). ¹H-NMR (CDCl₃) δ : 0.94 (d, J = 7 Hz, 6H, $2CH_3$), 1.28 (t, J = 7 Hz, 3H, CH_3), 1.6–2.0 (m, 1H, CH_3), 2.34 (d, J = 7 Hz, 2H, CH₂), 4.24 (q, J = 7 Hz, 2H, CH₂), 4.92 (s,

2H, CH₂COO), 6.79 (s, 1H, pyrrole H), 7.08 (s, 1H, pyrrole H). MS: 310 (M+). Anal $C_{14}H_{18}N_2O_2S_2$ (C, H, N).

Pharmacology

Inhibition of aldose reductase in vitro

The preparation of aldose reductase from rat lens and determination of its activity were essentially conducted according to the method of Hayman *et al* [18]. AR activity was assayed by determining spectrophotometrically at 340 nm oxidation of reduced nicotine amide adenine dinucleotid phosphate (NADPH) to NADP using DL-glyceraldehyde as the substrate. The reaction mixture contained 0.1 M phosphate buffer (pH 6.2), 0.25 mM NADPH, 1.5 mM DL-glyceraldehyde and the enzyme in a total volume of 1.00 ml. The effects of inhibitors on enzyme activity were determined by adding them to the reaction mixture in the desired concentration. The % inhibition for each inhibitor was calculated by comparing the reaction rate of the solutions containing the inhibitor with that of control. IC₅₀ values were obtained by estimating graphically from the log concentration—response curves.

Inhibition of sorbitol accumulation in vivo

Six-wk-old male Wistar rats were rendered diabetic by an intravenous injection of streptozotocin (70 mg/kg body weight). After 1 wk of induction of diabetes, rats with plasma glucose levels > 400 mg/dl were grouped and given a test compound as a suspension in 0.5 % methyl cellulose orally twice a day for 1 d. The rats were kept in identical cages and had free access to laboratory chow and water. Eighteen h after final administration of the compound, the rats were anesthesized with ether and the sciatic nerves were removed. Sorbitol was extracted from the sciatic nerve by the method of Peterson et al [19] and measured enzymatically by the method of Clements et al [20]. The sorbitol contents were compared with that obtained for the control group given a vehicle only.

Acknowledgments

We thank M Taketani and M Saeki for the elemental analytical data, K Muramoto for the NMR spectral data and R Azuma for the mass spectral data.

References

- 1 Gabbay KH (1975) Annu Rev Med 26, 521-536
- 2 Kinoshita JH, Kador PF, Catiles M (1981) J Am Med Assoc 246, 257–261
- 3 Kador PF, Robinson WG, Kinoshita JH (1985) Annu Rev Pharmacol Toxicol 25, 691–714
- 4 Jaspan J, Maselli R, Herold K, Bartkus C (1983) Lancet II, 758-762
- 5 Young RJ, Ewing DJ, Clarke BF (1983) *Diabetes* 32, 938–942
- 6 Murakami Y, Tani M, Ariyas T, Nishiyama C, Watanabe T, Yokoyama Y (1988) Heterocycles 27(8), 1855–1860
- 7 West CT, Donnelly SJ, Kooistra DA, Doyle MP (1973) J Org Chem 38 (15), 2675-2681
- 8 Yamada S, Kasai Y, Shioiri T (1973) Tetrahedron Lett 18, 1595–1598
- 9 Papadopoulos P (1973) J Org Chem 38 (4), 667–674
- Fujisawa Pharmaceutical Co Ltd (1987) Jpn Pat No 174, 062; Chem Abstr (1988) 108, 687
- 11 Bailey DM, Johnson RE, Albertson NF (1988) Org Syn Col 6, 618-619
- 12 MacDonald SF, Markovac A (1965) Can J Chem 43 (12), 3247–3252
- 13 Archibald JL, Walker DM, Shaw KB, Markovac A, MacDonald SF (1966) Can J Chem 44 (3), 345–362
- 14 Ueno Y, Nawa H, Ueyanagi J, Morimoto H (1955) *J Pharm Soc Jpn* 75, 814–821
- 15 Martin D, Rackow S (1965) Chem Ber 98 (11), 3662–3671
- 16 Fischer H, Walach B (1926) Justus Liebigs Ann Chem 450, 109-132
- 17 Jones RVH, Kenner GW, Smith KM (1974) J Chem Soc Perkin I, 531-534
- 18 Hayman S, Kinoshita JH (1965) J Biol Chem 240, 877–882
- 19 Peterson MJ, Sarges R, Aldinger CE, MacDonald DP (1979) Metabolism 28, suppl 1, 456-461
- 20 Clements RS, Marrison JAD, Winegrad AI (1969) Science 166, 1007–1008