REACTION OF 3,4-DISUBSTITUTED 1,2,5-OXADIAZOLE 2-OXIDES WITH DIPOLAROPHILES

SUBSTITUENT AND SOLVENT EFFECT ON THE REACTION COURSES

TOMIO SHIMIZU,* YOSHIYUKI HAYASHI, TAKEHIRO TANIGUCHI and KAZUHIRO TERAMURA Department of Color Chemistry and Technology, Faculty of Industrial Arts, Kyoto Technical University, Matsugasaki, Sakyo-ku, Kyoto 606, Japan

(Received in Japan 24 February 1984)

Abstract—A variety of symmetrically or unsymmetrically 3,4-disubstituted furoxans such as dicyano, dialkyl, diacyl, bis(phenylsulfonyl), N,N'-dialkyldicarbamoyl, 3(or 4)-methyl-4(or -3)-phenyl(or nitro, ethoxy, phenoxy, phenylthio, pyrrolidinyl, phenylsulfonyl), 3(or 4)-ethyl-4(or -3)-phenyl(or nitro, ethoxy-4(or -3)-phenylsulfonylfuroxan reacted with dipolarophiles in toluene or xylene at the refluxing temperature to give nitrone-type 1,3-dipolar cycloadducts, 5-substituted 1-aza-2,8-dioxabicyclo-[3.3.0]octanes and/or 3-substituted 2-isoxazoline 2-oxides. On the other hand, some of the furoxans gave 2isoxazolines via nitrile oxide 1,3-dipolar cycloaddition in a toluene (or xylene)-DMF solvent at the refluxing temperature.

Extensive studies have been carried out on the syntheses and the reaction of 1,2,5-oxadiazole 2-oxides (furoxans). We have recently reported a new type of reaction of 3,4-bis(ethoxycarbonyl)-1,2,5-oxadiazole 2-oxide (1) with olefins, where the furoxan behaves as a nitrone as shown in eqn (1).¹

EtOCOC CCOOEt

$$y$$
 xylene
 1
 y xylene
 y xylen

We now report in detail the reactivity of furoxans bearing other various substituents (cyano, carbamoyl, phenylsulfonyl, alkoxy, nitro, pyrrolidinyl, phenylthio, phenyl, and alkyl group) towards dipolarophiles and solvent effect on the reaction.

RESULTS AND DISCUSSION

Furoxans undergo thermal isomerizations or ringcleavage reactions. Four types of reactions (a)-(d) have been reported when furoxans are thermally treated in the presence of olefins as a trapping agent of the intermediates.

(a) The furoxan (1) behaves as a nitrone.¹ (ex. eqn 1).
(b) Thermal reversion into two moles of nitrile oxide.²

$$\frac{PhSO_2C = CSO_2Ph}{xy1ene} [PhSO_2C = N \rightarrow 0]$$

$$\frac{PhSO_2C = N \rightarrow 0}{Ph} (2)^{2a}$$

(c) Ring interconversion into rearranged nitrile oxide.³

Phcoc ccoph

$$y_0 - N x_0$$

 $x_y \text{ lene}$
 $Phcoc c = N + 0$
 $Phcoc - C$
 $Phcoc$

(d) Ring-cleavage reaction with concomitant fragmentation, giving nitrile oxide.⁴

$$\begin{array}{c} \text{CH}_{3C} & -\text{COOH} & -\text{CO}_{2} \\ \text{How How } & \text{xylene} \end{array} \qquad \left[\begin{array}{c} \text{CH}_{3C} & \text{CE} & \text{How How } \\ \text{How } \\ \text{How How } \end{array} \right]$$

$$\begin{array}{c} \text{CH}_{3C} & \text{CH}_{3H} \\ \text{How How } \\ \text{How } \\ \text{How } \end{array} \qquad \left[\begin{array}{c} \text{CH}_{3C} & \text{CH}_{3H} \\ \text{How } \\ \text{How } \end{array} \right]$$

$$\begin{array}{c} \text{CH}_{3C} & \text{CH}_{3H} \\ \text{How } \\ \text{How } \\ \text{How } \end{array} \qquad \left[\begin{array}{c} \text{CH}_{3C} & \text{CH}_{3H} \\ \text{How } \\ \text{How } \\ \text{How } \end{array} \right]$$

We reinvestigated the cycloaddition reactions of furoxans (4-9) (Tables 1 and 2), expecting the possibility of nitrone-type cycloadditions along with the nitrile oxides cycloadditions (eqns 2-4). We found that the furoxans underwent the nitrone-type cycloaddition when the reaction conditions are suitable. It is known that the asymmetrically substituted furoxans (9) easily attain an equilibrium with their isomers under our reaction conditions⁵ and, therefore, the formation of four nitrone-type cycloadducts may be expected from the reaction of 9 with dipolarophiles (eqn 5). The results are shown in Tables 1 and 2.

T. SHIMIZU et al.

Furoxan (R)		01efin*	React a	ion (b	Cours c	e** d	Solvent***
4	(CN)	A, B, C, D	0				X, T, or T-D
<u>5a</u>	(CONH2)	B, C, D				0	X-D
<u>5b</u> <u>5c</u>	(CONHCH ₃) (CONHC ₂ H ₅)	C, D	0				x
<u>6a</u>	(сосн ₃)	A B, C, D C, D	0		0	0	X X T-D
<u>6b</u> 6c	(сорћ) (сос _б н ₄ осн ₃)	A			0		X, T, or B
<u></u>	(SO ₂ Ph)	C A, B, D	0	0			x X
8	(сн ₃)	A	0				x

 Table 1. Reaction courses of symmetrically substituted furoxans (4-8)

* A; Electron-poor olefins such as maleimides, B; conjugated olefins,
C; norbornene or cyclododecene, D; electron-rich olefins except C.
** Circle shows the isolation of the products.
*** X; xylene,
T; toluene, B; benzene, D; dimethylformamide.

	Furoxa	n (<u>9</u>)	01-61-	Prod	uct*
	R ¹	R ²	Uletin	A-type	B-type
<u>9a</u>	снз	с ₂ н ₅)		
<u>9b</u>	снз	сн(сн ₃)2	malaimidas	0	
<u>9c</u>	снз	Ph	mareninges	0	
<u>9d</u>	Et	Ph	J		
<u>9e</u>	CH3	NO ₂	maleimides	0	
<u>9e</u>	снз	NO ₂	electron-rich or conjugated		0
<u>9f</u>	снз	SO ₂ Ph	electron-rich		0
<u>9g</u>	снз	0C2H5	1		
<u>9h</u>	CH3	OPh		~	
<u>91</u>	снз	pyrrolidiny]	marenmides	0	
<u>9j</u>	снз	SPh	J		
<u>9k</u>	0C2H5	SO ₂ Ph	electron-rich		0

 Table 2. Products from the reaction of asymmetrically substituted furoxans (9) with olefins

* Circle shows the isolation of the products.

and/or X [B-type]

The nitrone-type reaction may be explained on the basis of a considerable lowering of LUMO energy of furoxans (4, 5b, 5c, 6a, 7, 9e, 9f, and 9k) by electron-withdrawing substituents,⁶ thus, dipole (LUMO)-dipolarophile (HOMO) interaction is favorable. In other words, a similar reaction observed for furoxans (8, 9a-e, and 9g-j) bearing electron-donating substituents may be explained by a result of an increase in the HOMO energy of the furoxans,⁶ thus, dipole (HOMO)-dipolarophile (LUMO) interaction is favorable. Besides these electronic factors described above, steric factor may play an important role in the nitronetype cycloaddition of unsymmetrically substituted furoxans.

As shown in eqns (4) and (6), some furoxans underwent nitrone O- assisted elimination followed by rearrangement into nitrile oxide (10) (eqn 6).

The structure of the products was assigned on the basis of spectral and analytical data. These cycloaddition reactions were rather complex depending on substituents on furoxans and solvent. Therefore, the results are described in detail.

3,4-Dicyanofuroxan. The cycloadducts, 5-cyano-1-aza-2,8-dioxabicyclo[3.3.0]octanes (14) and/or 3cyano-2-isoxazoline N-oxides (13), could be obtained from the reaction of 4 with several olefins (Table 3). Though the reaction of 1 with olefins

proceeds at the temperature of refluxing xylene, the reaction of 4 proceeds with rapid velocity even at the temperature of refluxing toluene. From the reaction with cycloalkenes, 1:1 cycloadducts (13) were isolated, which could undergo further cycloaddition (Table 4). From the reaction with phenyl vinyl ether,

13p or 13q
$$\xrightarrow{\chi}$$
 χ $\xrightarrow{(CH_2)_n}$ (8)

three stereoisomers (14h), i.e. exo-exo, exo-endo, and endo-endo substituted isomers, were isolated in 51, 25, and 3% yields, respectively. A small amount of 3-carbamoyl-5-phenyl-2-isoxazoline (16g) was also isolated in addition to 14g (24%) on the reaction

of 4 with styrene in toluene. When the same cycloaddition reactions were carried out in toluene-DMF (1:1), a predominant formation of 3-carbamoyl-2-isoxazolines (16) was observed (Table 5)

and any trace of 13 or 14 could not be detected. Phenylacetylene behaved similarly, giving 3-carbamoyl-5-phenylisoxazole (17). Similar results were obtained using dimethylacetamide or dimethylsulfoxide instead of DMF. The compounds 16 are not produced via 13 or 14, because 13 or 14 was recovered unchanged after the heating in toluene-DMF (1:1). From these results, it can be supposed that dipolar aprotic solvents have some directional effects on the reaction course. One possible mechanism for the formation of 16 consists of the hydration of 3-cyano-2-isoxazolines (19) which are produced from the thermal decomposition of 4 to two moles of cyanogen N-oxide (18) followed by cycloaddition to dipolarophiles (eqn 10). However, this

$$4 \xrightarrow{\sqrt{x}}_{0} \xrightarrow{\sqrt{x}}_{0} \xrightarrow{\sqrt{x}}_{0} \xrightarrow{\sqrt{x}}_{2} \xrightarrow{$$

T. SHIMIZU et al.

	nom die redelien of 4 with dipolatophilos in totality					
Dipolarophile	Product	Yield	M.p.			
		%	°C			
l-eicosene	14a (X = C ₁₈ H ₃₇ , Y = Z = H)	61	74-75			
1-octadecene	<u>14b</u> (X = $C_{16}H_{33}$, Y = Z = H)	80	68- 70			
1-hexadecene	14c (X = C ₁₄ H ₂₉ , Y = Z = H)	72	62- 63			
1-tetradecene	<u>14d</u> (X = $C_{12}H_{25}$, Y = Z = H)	50	52- 53			
allyl p-nitrophenyl ether	<u>14e</u> (X = $CH_2OC_6H_4NO_2$, Y = Z = H)	30	174-176			
allylbenzene	<u>14f</u> (X = CH ₂ Ph, Y = Z = H)	35	110-114			
styrene	<u>14g</u> (X = Ph, Y = Z = H)	25	139-140			
	<u>16g</u> (X = Ph, Y = Z = H)	4	171-172			
phenyl vinyl ether	14h(ex-ex) (X = OPh, Y = Z = H)	51	150-153			
	<u>14h</u> (ex-en) (X = OPh, Y = Z = H)	25	118-123			
	<u>14h</u> (en-en) (X = OPh, Y = Z = H)	3	172-174			
2-naphtyl vinyl ether	<u>14i</u> (ex-ex) (X = OC ₁₀ H ₇ , Y = Z = H)	8	194-196			
	<u>14i</u> (ex-en) (X = OC ₁₀ H ₇ , Y = Z = H)	3	179-180			
octadecyl vinyl ether	<u>14j</u> (X = $OC_{18}H_{37}$, Y = Z = H)	14	45- 50			
methyl methacrylate	<u>14k</u> (ex-en) (X = CO_2CH_3 , Y = H, Z = CH_3) 36	166-167			
<i>N</i> -phenylmaleimide	<u>14m(</u> ex-en) [X.Y = -CON(Ph)CO-, Z = H]	46	ca. 300			
norbornene	$14n(ex-ex)$ (X,Y = $-C_5H_8-$, Z = H)	85	128-132			
cyclododecene	<u>13p</u> (Y,Z = $-C_{10}H_{20}$, X = H)	61	94- 96			
cyclooctene	<u>14q</u> (ex-ex) (X,Y = -C ₆ H ₁₂ -, Z = H)	3	139-140			
	<u>13q</u> (x, Y = -C ₆ H ₁₂ -, Z = H)	7	oil			
cycloheptene	<u>14r</u> (X,Y = $-C_5H_{10}$ -, Z = H)	4	162-164			

Table 3. Yields and melting points of the products obtained from the reaction of 4 with dipolarophiles in toluene

mechanism is ruled out by the results of following experiment; 3-cyano-5-phenyl-2-isoxazoline (19g), which was prepared from the reaction of cyanoformhydroximic chloride with styrene⁷ was recovered unchanged after treating it in refluxing DMF containing a small amount of water. It is known that aliphatic 1,2dinitriles are labile to water, giving the ammonium salts of the corresponding acids.⁸ Thus, the primary cycloadducts (21) would be a precursor of 16.

Table 4. Yields and melting points of 15

			Yield	M.p.	
	n 	X	¥	°C	
<u>15a</u>	10	CH20C6H4N02-p	20	114-116	
<u>15b</u>	10	^С 6 ^Н 5	16	115-117	
<u>15c</u>	6	CH20C6H4N02-P	7	158-160	

Furoxandicarboxamide and its alkyl derivatives. It may also be expected that furoxandicarboxamide (5a) and its alkyl derivatives (5b-d) show a reactivity similar to 1 or 4 in the reaction with dipolarophiles.

RNHCOG-CCONHR	5a	R	=	н
No Nan	5b	R	E	CH3
0 0	5c	R	=	C2H5
	5 d	R	=	CH_CH=CH

From the reaction of 5b or 5c with dipolarophiles in xylene at refluxing temperature, 5-(N-alkyl) carbamoyl-1-aza-2,8-dioxabicyclo[3.3.0]octanes (23) and 3-(N-alkyl)carbamoyl-2-isoxazoline N-oxides (22) were obtained in yields shown in Table 6. These carbamoylfuroxans (5b and 5c) were recov-

Substituent and solvent effect on the reaction courses

Dipolarophile	Product	Yield °	і1.р. °С
1-hexadecene	<u>16c</u> (X = C ₁₄ H ₂₉ , Y = Z = H)	44	114 - 116
styrene	16g (X = Ph, Y = Z = H)	40	171 - 172
<i>N</i> -phenylmaleimide	<u>16m</u> [X,Y = -CON(Ph)CO-, Z = H]	42	210 - 213
cyclododecene	$\frac{16p}{10}$ (Y,Z = -C ₁₀ H ₂₀ -, X = H)	10	127 - 128
phenylacetylene	17	20	206 - 207
N-ethylmaleimide	16s [X,Y = -CON(Et)CO-, Z = H]	48	228 - 229
acenaphthylene	$\frac{16t}{16t} (X,Y = -C_{10}H_6^-, Z = H)$	40	250 - 270

Table 5. Yields and melting points of the products obtained from the reaction of 4 with dipolarophiles in toluene-DMF

ered unchanged in the reaction with other olefins. The 1:1 cycloadduct (22d) reacted with allyl *p*-nitrophenyl ether to give a cycloadduct (24). While no

22d
$$\xrightarrow{CH_2=CHCH_2OC_6H_4NO_2}$$
.
 $O_2NC_6H_4OCH_2 \xrightarrow{CONHCH_3} 24$ (13)

cycloadducts could be obtained from 5a in xylene probably because of insolubility of 5a in xylene, 3carbamoyl-4-(2-hydroxy)ethyl-1,2,5-oxadiazole (12) was obtained by heating in xylene-DMF (1:1) (eqn 6). Though it may be possible to assign an alternative structure (11) for the products, the validity of the structure 12 was elucidated by the following NMR data; the chemical shift ($\delta 4.5-5.7$) of an OH proton observed does not accord with 11 because an acidic oxime proton generally appears at the more down field region of about 89-12.⁹ Furthermore, a characteristic coupling pattern observed in the 2-isoxazoline ring system could not be found. The assignment of the structure was further supported by the isolation of a keto-compound, 3-carbamoyl-4-phenacyl-1,2,5-oxadiazole (25), from the reaction of 5a with phenylacetylene. Isolation of ammonium cyanate and evolution of NH₃ and CO₂ in the reaction also suggest elimination of HNCO from 5a.

 Table 6. Yields and melting points of the products obtained from the reaction of 5 with dipolarophiles

r	D/	Caluant	Duradurad	Yield	М.р.
Furoxan	Ulpolarophile	50 Ivent		2	°C
<u>5b</u>	l-tetradecene	xylene	<u>23a</u> (R = CH ₃ , X = C ₁₂ H ₂₅ , Y = Z = H)	7	80-82
<u>5b</u>	allyl p-nitrophenyl ether	xylene	$\underline{23b}$ (R = CH ₃ , X = CH ₂ OC ₆ H ₄ NO ₂ , Y = Z = H)	20	163-165
<u>5b</u>	cyclododecene	xylene	$\frac{22c}{10}$ (R = CH ₃ , X = H, Y,Z = -C ₁₀ H ₂₀ -)	4	118-120
<u>56</u>	norbornene	xylene	$\frac{22d}{2}$ (R = CH ₃ , X,Y = -C ₅ H ₈ -, Z = H)	38	130-131
			$\underline{23d}$ (R = CH ₃ , X,Y = -C ₅ H ₈ -, Z = H)	15	247-249
<u>5c</u>	l-tetradecene	xylene	<u>23e</u> (R = C ₂ H ₅ , X = C ₁₂ H ₂₅ , Y = Z = H)	11	82- 85
<u>5c</u>	1-hexadecene	xylene	$\frac{23f}{2}$ (R = C ₂ H ₅ , X = C ₁₄ H ₂₉ , Y = Z = H)	11	92- 95
<u>5a</u>	l-tetradecene	xylene-DMF	$\frac{12a}{12}$ (X = C ₁₂ H ₂₅ , Y = Z = H)	53	75- 77
<u>5a</u>	allyl p-nitrophenyl ether	xylene-DHF	12b (x = CH ₂ OC ₆ H ₄ NO ₂ , Y = Z = H)	43	140-142
<u>5a</u>	cyclododecene	xylene-DMF	$\frac{12c}{12c}$ (x = H, Y,Z = $-C_{10}H_{20}^{-}$)	15	166-168
<u>5a</u>	styrene	xylene-DMF	$\frac{12g}{12g}$ (X = Ph, Y = Z = H)	7	152-154
<u>5a</u>	phenylacetylene	xylene-DMF	25	19	122-125
<u>5a</u>	norbornene	xylene-DMF	22d	5	
			<u>23d</u>	33	

(14

P

Using 5b or 5c instead of 5a in xylene-DMF, the corresponding N-alkyl derivatives of 12 could not be obtained and starting materials were recovered. Exceptionally, 5b and norbornene produced the adducts 22d and 23d in 5% and 33% yield, respectively. Similarly, N,N,N',N'-tetramethylfuroxandicarboxamide (5e) having no NH proton in carbamoyl groups gave no cycloadducts with various dipolarophiles and 5e was recovered unchanged quantitatively from the reaction mixture.

3,4-Bis(phenylsulfonyl)furoxan (7) and 3,4-diacylfuroxans (6a-c). Thermal reversion to nitrile oxides is reported on furoxans bearing such elecron-withdrawing groups as phenylsulfonyl^{2a} or acyl group.³ 3,4-Bis(phenylsulfonyl)furoxan (7) is decomposed thermally to two moles of phenylsulfonylnitrile oxide at the temperature of refluxing xylene, which undergoes 1,3-dipolar cycloaddition with olefins to give 3-phenylsulfonyl-2-isoxazolines in a good yield (eqn 2).^{2a} The reactivity may be interpreted on the basis of the steric hindrance between two phenylsulfony groups of 7.

3,4-Diacylfuroxans (6) undergo N-O bond fission of the oxadiazole ring with a concomitant migration of an acyl group to give a nitrile oxide at relatively low temperature (80–120°), which undergoes 1,3-dipolar cycloaddition with olefins to give cycloadducts (eqn 3).³ Such reactivity of diacylfuroxans has been explained in terms of the high migratory aptitude of the acyl groups.³

Compound 26 was the only isolable cycloadduct from the reaction of 3,4-diaroylfuroxans (6b and 6c) with N-phenylmaleimide in aromatic solvents under various thermal conditions (80–150°). On the other

hand, 27 was obtained as a major product from the reaction of 3,4-diacetylfuroxan (6a) with N-phenylmaleimide in refluxing xylene. However, none of analogous cycloadducts could be obtained from the reaction of 6a with other olefins listed in Table 7, and the only isolable adducts were 26. On the other hand, 3-[1-(hydroxyimino)-2-oxo]propyl-2-isoxazo-

lines (11a and 11b) were obtained in high yields from the reaction of **6a** with olefins in toluene-

$$\mathbf{6a} + \mathbf{y} = \mathbf{x}^{Z} - \mathbf{boluene-DHF} = \mathbf{CH}_{3}COC - \mathbf{c} - \mathbf{y}^{Y} - \mathbf{x}^{Y} - \mathbf{boluene-DHF} = \mathbf{$$

DMF (1:1). The structure of 11a and 11b was established from the characteristic coupling pattern for the isoxazoline ring protons and the acidic OH proton for oximes at δ 12-13.

The nitrone-type cycloadducts, 3-phenylsulfonyl-2-isoxazoline N-oxides (**28a** and **28b**), could be obtained from the reaction of 7 with electron-rich dipolarophiles such as cyclododecene and norbornene (Table 8). With other dipolarophiles, 7 gave

$$hso_{2}G_{1} - f_{x} = h, \ y, z = -(CH_{2})_{10} - f_{x} = 28b; \ x, y = -c_{5}H_{8}, \ z = H$$

the same type of adducts as reported in the literature.^{2a}

3,4-Dialkylfuroxans. 3,4-Dialkylfuroxans are known to react with electron-rich alkenes at elevated temperature (200°) to give 3-alkyl-2-isoxazolines (29) via a nitrile oxide intermediate.²⁰ We reinvestigated the

reaction of 3,4-dimethylfuroxan (8) with various olefins at the temperature of refluxing xylene and observed the formation of nitrone-type cycloadducts, 5-methyl-1-aza-2,8-dioxabicyclo[3.3.0]octanes (30a-c), in the case of the reaction with maleimides (Table 8).

 Table 7. Yields and melting points of the products obtained from the reaction of 6 with dipolarophiles

Eurovan	Dinalamonhile	Solvent	Qraduct.		М.р.
Fulloxan	orporarounite			%	°C
<u>6a</u>	1-tetradecene	xylene	$\frac{26a}{26a}$ (R = CH ₃ , X = C ₁₂ H ₂₅ , Y = Z = H)	70	45- 50
<u>6a</u>	cyclododecene	xylene	$\underline{26b}$ (R = CH ₃ , X = H, Y,Z = -C ₁₀ H ₂₀ -)	40	124-125
<u>6a</u>	styrene	xylene	$\frac{26c}{26c}$ (R = CH ₃ , X = Ph, Y = Z = H)	22	128-129
<u>6a</u>	N-phenylmaleimide	xylene	27	35	257-260
<u>6b</u>	N-phenylmaleimide	benzene	<u>26d</u> [R = Ph, X,Y = -CON(Ph)CO-, Z = H]	32	191-194
<u>6c</u>	N-phenylmaleimide	toluene	<u>26e</u> [R = $C_6H_4OCH_3$, X,Y = -CON(Ph)CO-, Z = H]	42	
<u>6a</u>	l-tetradecene	toluene-DMF	<u>11a</u> (R = CH ₂ , X = C ₁₂ H ₂₅ , Y = Z = H)	46	61- 63
<u>6a</u>	cyclododecene	toluene-DMF	<u>11b</u> (R = CH ₂ , X = H, Y,Z = - $C_{10}H_{20}$ -)	70	130-132

Furoxan	Dipolarophile	Product	Yield	M.p. °C
<u>7</u>	cyclododecene	<u>28a</u>	35	90 - 91
<u>7</u>	norbornene	<u>28b</u>	41	120 - 126
<u>8</u>	<i>N</i> -phenylmaleimide	<u>30a</u>	15	ca. 350
<u>8</u>	N-ethylmaleimide	<u>30b</u>	20	264 - 266
<u>8</u>	N-propylmaleimide	<u>30c</u>	18	252 - 253
<u>9a</u>	<i>N</i> -phenylmaleimide	<u>30 a</u>	75	
<u>9b</u>	N-phenylmaleimide	<u>30a</u>	10	
<u>9c</u>	N-phenylmaleimide	<u>30a</u>	29	
<u>90</u>	N-phenylmaleimide	<u>31a</u>	δ	257 - 267
<u>9e</u>	N-phenylmaleimide	<u>30a</u>	7	
<u>9e</u>	<i>N</i> -propylmaleimide	<u>30c</u>	12	
<u>9e</u>	norbornene	<u>32a</u>	10	159 - 161
<u>9e</u>	styrene	<u>32b(ex-ex)</u>	10	177 - 180
		<u>32b</u> (ex-en)	10	158 - 1 60
<u>9e</u>	2-naphthyl vinyl ether	<u>32c</u>	7	206 - 207
<u>9f</u>	norbornene	<u>28b</u>	25	
<u>9g</u>	<i>N</i> -phenylmaleimide	<u>30a</u>	70	
<u>9g</u>	N-propylmaleimide	<u>30c</u>	65	
<u>9h</u>	N-phenylmaleimide	<u>30a</u>	63	
<u>9h</u>	N-ethylmaleimide	<u>30b</u>	22	
<u>9h</u>	<i>N-</i> propylmaleimide	<u>30c</u>	55	
<u>9i</u>	∛-phenylmaleimide	<u>30a</u>	26	
<u>9i</u>	<i>N</i> -propylmaleimide	<u>30c</u>	15	
<u>9j</u>	N-phenylmaleimide	<u>30a</u>	8	
<u>9 j</u>	<i>N-</i> propylmaleimide	<u>30c</u>	5	
<u>9k</u>	norbornene	33	36	183 - 184

 Table 8. Yields and melting points of the products obtained from the reaction of 7-9 with dipolarophiles

~ . .

3,4-Di-unsymmetrically substituted furoxans. As mentioned previously, cycloadducts bearing a Me group at the 5-position of bicyclo[3.3.0]octane were the only isolable compounds from the reaction mixture of **9a-c** and maleimides (Table 8). Using other dipolarophiles, the starting materials were recovered quantitatively. Similarly, the corresponding 5-ethyl derivative (**31a**) was obtained from the reaction of **9d** with N-phenylmaleimide. Though the exclusive formation of one of nitrone-type cycloadducts in the reaction of **9a** or **9b** with maleimides can be explained on the basis of the thermodynamic stability of 3-methylfuroxan isomers (eqn 5) [the isomer ratio of **9a**(3-CH₃)/**9a**(4-CH₃) is ca 2.0 by the NMR spectra at room temperature], the exclusive formation of the nitrone-type cycloadduct (A-type) is supposed to be the steric effect in the transition state of the cycloaddition. The exclusive formation of one of nitrone-type cycloadducts in the reaction of **9c** or **9d** with maleimides can be explained on the basis of a similar steric effect.

An interesting result was observed in the reaction of **9e** with olefins; **9e** reacts with electron-rich or conjugated olefins such as norbornene, 2-naphthyl vinyl ether, or styrene to give 5-nitro-1-aza-2,8-dioxabicyclo[3.3.0]octanes (32), while 30 was obtained from the reaction of **9e** with maleimides.

$$30 \xrightarrow{CU_{NR}} CH_{3}C_{C10}^{-C10}$$

$$9e$$
norbornene, styrene, or
$$2-naphtyl vinyl ether$$

$$32a; x, Y = -C_{5}H_{8}^{-}$$

$$32b; x = Ph, Y = H$$

$$32c; x = 0C_{10}H_{7}, Y = H$$
(18)

While an expected cycloadduct (28b) was obtained from the reaction of 9f with norbornene, 30a-c could not be detected from the reaction of 9f with maleimides. While furoxans (9g-j) bearing efficient

electron-donating substituents were expected to react with electron-poor olefins such as maleimides to give the corresponding 5-ethoxy (or phenoxy, pyrrolidinyl, phenylthio) derivatives of 30, the actually isolated products were 30a-c.

It is interesting to research the reactivity of furoxan (9k) bearing both a powerful electron-withdrawing substituent and an electron-donating substituent. Though the cycloadduct (33) was obtained from the reaction of 9k with norbornene, none of the cycloadducts could be obtained from the reaction of 9k with maleimides.

Intramolecular nitrone-type cycloaddition of furoxans. Facile trapping of a nitrone dipole was observed in furoxans bearing appropriately located olefins. The application to intramolecular cycloaddition was attractive for the syntheses of heteropolycyclic compounds. In fact, tetracyclic compound 34 was obtained in a good yield via primarily intramolecular cycloaddition from the reaction of 5d with

N-phenylmaleimide. Intramolecular cycloadducts could also be obtained from the reaction of furoxan with polyenes in which two double bonds are located in an appropriate position. For example, 4 or 7 reacted with 1,5-cyclooctadiene to give intramolecular cycloadducts (35a or 35b, respectively).

4 or 7
$$rac{1}{toluene}$$
 $rac{R}{0,N_0}$ 35a; $R = CN (22)$
35b; $R = SO_2Ph$

However, 4 reacts with norbornadiene to give only intermolecular cycloadducts (36 and 37).

EXPERIMENTAL

Measurements. All m and b pts are uncorrected. IR spectra were determined on a Hitachi 215 IR Spectrophotometer. ¹H-NMR spectra were measured on Valian T-60A instrument with Me₄Si as an internal standard. All new products gave correct elemental analyses which are shown in Table 9 along with ¹H-NMR data.

Materials. Compounds 4,¹⁰ 5a,¹¹ 5e,¹² 7,¹³ 6a,¹⁴ 6b or 6c,¹¹ 8,¹⁵ 9c,¹⁵ 9e,¹⁶ 9f,^{5e} 9g,^{5e} 9h,^{5e} 9i,^{5e} 9i,^{5e} 9k,¹³ and 3-cyano-5phenyl-2-isoxazoline⁷ were prepared according to the method described in the literature. Compounds 9a, 9b, and 9d were prepared according to a method similar to the preparation of 8 or 9c;¹⁵ 9a: 55% yield, b.p. 105–108°/20 mmHg; 9b: 76% yield, b.p. 88–90°/3 mmHg; 9d: 80% yield, b.p. 135–145°/3 mmHg.

Preparation of N,N'-dimethyl(or diethyl or diallyl)furoxandicarboxamide 5b (or 5c or 5d). To a stirred 15% methylamine (or 25% ethylamine or 20% allylamine) soln (50 ml), was added dropwise 10g (43 mmol) of 3,4-bis(ethoxycarbonyl)furoxan¹¹ at 0-5°. After stirring the mixture for several hours at room temp, the ppt was filtered off. 5b: 52% yield, m.p. 169-170° (from EtOH); 5c: 21% yield, m.p. 118-119° (from CCl₄); 5d: 25% yield, m.p. 100-101° (from CCl₄).

Reaction of fluroxans with dipolarophiles

General procedure. A mixture of furoxan (10 mmol) and dipolarophile (20 mmol) was refluxed in xylene or toluene (or a mixed-solvent consisting of same volume of one of these aromatic solvents and DMF) (30 ml) for 24 hr. In the case of the reaction with styrene or maleimide, a small amount of hydroquinone was also added. Evaporation of the solvent and other low-boiling products from the mixture in a rotary evaporator gave the crude product. The crystalline crude products were recrystallized from EtOH and the oily crude products were chromatographed (silica gel) with CHCl₃ to give the crystalline products, which were recrystallized from EtOH. Yields and m.p. are shown in Table 3 and Tables 5-8. The separation of the three isomers of 14h was accomplished by combination of the fractional crystallization and the chromatographic technique (silica gel-CHCl₃).

~~

Table 9. Analytical and ¹H NMR spectral data of the components listed in Tables 3-8

Compound	Anal., Calcd. (Found) C % II % N %	¹ Η₩R, δ ppm (solvent)
<u>14a</u>	78.20 12.50 4.34 (78.04) (12.60) (4.34)	(CDC1 ₃) 0.7-2.1 (m, 74 H), 2.1-3.1 (m, 4 H), 3.9-4.9 (m, 2 H)
<u>14b</u>	77.49 12.32 4.76 (77.49) (12.45) (4.76)	(CDC1 ₃) 0.7-2.1 (m, 66 H), 2.1-3.1 (m, 4 H), 3.8-4.9 (m, 2 H)
<u>14c</u>	76.63 12.11 5.26 (76.65) (12.37) (5.29)	(CDC1 ₃) 0.7-2.1 (m, 58 H), 2.1-3.1 (m, 4 H), 3.8-4.9 (m, 2 H)
<u>14d</u>	75.57 11.84 5.88 (75.57) (11.96) (5.88)	(CDC1 ₃) 0.7-2.0 (m, 50 H), 2.1-3.1 (m, 4 H), 3.8-4.9 (m, 2 H)
<u>14e</u>	54.29 4.10 12.66 (54.52) (4.11) (12.69)	(DMSO-d ₆) 2.65—3.25 (m, 4 H), 4.2—4.4 (m, 4 H), 4.7—5.3 (m, 2 H), 7.1 (d, 4 H, J = 9 Hz), 8.15 (d, 4 H, J = 9 Hz)
<u>14f</u>	74.97 6.29 8.74 (75.16) (6.27) (8.80)	(CDC1 ₃) 1.75-3.35 (m, 8 H), 4.0-5.0 (m, 2 H), 7.0-7.4 (m, 10 H)
<u>14g</u>	73.95 5.52 9.58 (74.21) (5.49) (9.61)	$(CDC1_3)$ 2.3-3.4 (m, 4 H), 5.0-5.9 (m, 2 H), 7.4 (s, 10 H)
<u>14h</u> (ex-ex)	66.66 4.97 8.64 (66.97) (4.95) (8.69)	(CDCl ₃) 3.0 (d, 4 H, J = 4 Hz), 6.05 (dd, 2 H, J = 4 & 5 Hz), 6.8—7.5 (m, 10 H)
<u>14h</u> (ex-en)	66.66 4.97 8.64 (66.70) (4.98) (8.61)	$(CDC1_3)$ 2.9-3.6 (m, 4 H), 5.9-6.2 (m, 2 H), 6.7-7.5 (m, 10 H)
<u>14h</u> (en-en)	66.66 4.97 8.64 (66.86) (4.97) (8.64)	(CDC1 ₃) 3.0—3.6 (m, 4 H), 6.1 (dd, 2 H, J = 3 & 6 Hz), 6.6—7.4 (m, 10 H)
<u>14i</u> (ex—ex)	73.57 4.75 6.60 (73.50) (4.77) (6.58)	(DMSO-d ₆) 2.9—3.7 (m, 4 H), 6.58 (dd, 2 H, J = 3 & 6 Hz), 7.1—8.1 (m, 14 H)
<u>141</u> (ex—en)	73.57 4.75 6.60 (73.59) (4.79) (6.56)	(DMSO-d ₆) 3.0-3.8 (m, 4 H), 6.4-6.7 (m, 2 H), 7.0-8.0 (m, 14 H)
<u>14j</u>	74.50 11.91 4.14 (74.78) (12.05) (4.01)	
<u>14k</u> (exen)	50.70 5.67 9.85 (50.88) (5.70) (9.75)	(CDC1 ₃) 1.45 (s, 3 H), 1.65 (s, 3 H), 2.5 (d, 1 H, J = 13 Hz), 2.53 (d, 1 H, J = 13 Hz), 3.30 (d, 1 H, J = 13 Hz), 3.43 (d, 1 H, J = 13 Hz), 3.73 (s, 3H), 3.77 (s, 3 H)
<u>14m</u> (ex—en)	61.40 3.28 13.02 (61.35) (3.32) (12.91)	(DMSO-d ₆) 4.8 (d, 1 H, J = 8 Hz), 4.87 (d, 1 H, J = 8 Hz), 5.2 (d, 1 H, J = 8 Hz), 6.07 (d, 1 H, J ≠ 8 Hz), 6.8—7.8 (m, 10 H)
<u>14n</u> (ex—ex)	70.56 7.40 10.29 (70.55) (7.44) (10.32)	$(CDC1_3)$ 0.7-2.1 (m, 12 H), 2.1-2.8 (m, 6 H), 4.5 (d, 2 H, J = 6 Hz)
<u>14q</u> (ex—ex)	71.01 9.27 9.20 (71.04) (9.34) (9.20)	(CDC1 ₃) 0.9—2.3 (m, 24 H), 2.53 (q, 2 H, J = 7 Hz), 4.53 (q, 2 H, J = 7 Hz)
<u>14r</u>	69.53 8.75 10.14 (69.40) (8.73) (10.10)	(CDC1 ₃) 1.0-2.3 (m, 20 H), 3.5-3.95 (m, 2 H), 4.9-5.4 (m, 2 H)
<u>13p</u>	67.17 8.86 11.19 (67.21) (8.90) (11.29)	(CDC1 ₃) 0.8-2.1 (m, 20 H), 3.35 (dt, 1 H, J = 3 & 7 Hz), 4.75(dt, 1 H, J = 3 & 7 Hz)
<u>13q</u>	61.83 7.27 14.42 (61.80) (7.35) (14.49)	(CDC1 ₃) 1.0-2.1 (m, 12 H), 3.1-3.5 (m, 1 H), 4.5-5.0 (m, 1 H)
<u>15a</u>	64.32 7.28 9.78 (64.29) (7.32) (9.79)	(CDC1 ₃) 1.2-2.0 (m, 20 H), 2.3-3.2 (m, 3 H), 3.8-4.3 (m, 1 H), 4.28 (d, 2 H, J = 4 Hz), 4.7-5.2 (m, 1 H), 7.0 (d, 2 H, J = 9 Hz), 8.17 (d, 2 H, J = 9 Hz)
<u>156</u>	74.54 8.53 7.90 (74.54) (8.57) (7.93)	(CDC1 ₃) 1.2—2.1 (m, 20 H), 2.3—2.8 (m, 1 H), 2.73 (d, 2 H, J = 8 Hz), 3.7—4.1 (m, 1 H), 5.6 (t, 1 H, J = 8 Hz)
<u>15c</u>	61.11 6.21 11.25 (60.99) (6.21) (11.15)	(CDC1 ₃) 1.0-2.3 (m, 12 H), 2.3-3.3 (m, 3 H), 4.0-4.5 (m, 2 H), 4.5-5.4 (m, 2 H), 6.8-7.3 (m, 2 H), 8.2 (d, 2 H, J = 9 Hz)

Table 9. Cont.

<u>16c</u>	69.63 11.04 9.02 (69.77) (11.12) (9.00)	(DMSO-d ₆) 0.8—1.9 (m, 29 H), 2.7 (dd, 1 H, J = 8 & 16 Hz), 3.2 (dd, 1 H, J = 10 & 16 Hz), 4.2—4.8 (m, 1 H), 6.9—7.5 (br, 2 H)
<u>16g</u>	63.15 5.30 14.73 (63.42) (5.29) (14.72)	(DMSO-dg [}] 3.05 (dd, 1 H, J = 9 & 18 Hz), 3.7 (dd, 1 H, J = 11 & 18 Hz), 5.73 (dd, 1 H, J = 9 & 11 Hz), 7.37 (s, 5 H), 7.4—8.0 (br, 2 H)
<u>16m</u>	53.52 7.11 15.60 (53.49) (7.10) (15.58)	(DMSO-d ₆) 5.0 (d, 1 H, J = 10 Hz), 5.73 (d, 1 H, J = 10 Hz), 7.0-8.2 (m, 7 H)
<u>16p</u>	66.63 9.59 11.10 (66.64) (9.66) (11.24)	(CDCl ₃) 1.0-2.2 (m, 20 H), 3.2-3.6 (m, 1 H), 4.5-5.0 (m, 1 H), 5.8 (br, 1 H), 6.5 (br, 1 H)
<u>16s</u>	45.50 4.30 19.90 (45.25) (4.27) (19.83)	(DMSO-d ₆) l.15 (t, 3 H, J = 7 Hz), 3.6 (q, 2 H, J = 7 Hz), 5.0 (d, 1 H, J = 9 Hz), 5.7 (d, 1 H, J = 9 Hz), 7.5 (br, 2 H)
<u>16t</u>	70.58 4.23 11.76 (70.69) (4.20) (11.87)	
<u>17</u>	63.82 4.29 14.89 (63.95) (4.30) (14.65)	(DMSO-d ₆) 7.3 (s, 1 H), 7.3-8.3 (m, 7 H)
<u>22c</u>	63.80 9.28 9.92 (63.76) (9.25) (9.92)	(CDCl ₃) 0.8-2.1 (m, 20 H), 2.8 (d, 3 H, J = 4 Hz), 3.2-3.6 (m, 1 H), 4.5-4.9 (m, 1 H), 8.1 (br, 1 H)
<u>22d</u>	57.13 6.71 13.33 (57.12) (6.73) (13.14)	(CDCl ₃) 1.0—1.9 (m, 6 H), 2.5—2.9 (m, 2 H), 2.8 (d, 3 H, J = 4 Hz), 3.53 (d, 1 H, J = 8 Hz), 4.57 (d, 1 H, J = 8 Hz), 8.2 (br, 1 H)
<u>23a</u>	73.17 11.89 5.51 (73.10) (12.02) (5.49)	(CDC1 ₃) 0.7-3.0 (m, 57 H), 2.8 (d, 3 H, J = 4 Hz), 4.2-4.8 (m, 2 H), 7.0 (br, 1 H)
<u>23b</u>	53.16 4.67 11.81 (53.12) (4.66) (11.76)	(CDC1 ₃) 2.63.1 (m, 7 H), 4.17 (d, 4 H, J = 4 Hz), 4.65.2 (m, 2 H), 6.77.1 (br, 1 H), 6.95 (d, 4 H, J = 9 Hz), 8.15 (d, 1 H, J = 9 Hz)
<u>23d</u>	67.08 7.95 9.20 (67.12) (7.95) (9.23)	(CDC1 ₃) 0.8—2.0 (m, 12 H), 2.2—2.7 (m, 6 H), 2.85 (d, 3 H, J = 4 Hz), 4.47 (d, 2 H, J = 6 Hz), 6.8 (br, 1 H)
<u>23e</u>	73.51 11.95 5.36 (73.48) (11.90) (5.35)	(CDC1 ₃) 0.7-2.0 (m, 57 H), 2.0-3.7 (m, 6 H), 3.8-4.9 (m, 2 H), 7.0 (br, 1 H)
<u>23f</u>	74.68 12.19 4.84 (74.83) (12.32) (4.78)	(CDC1 ₃) 0.6—1.9 (m, 61 H), 1.9—3.7 (m, 6 H), 3.8—4.9 (m, 2 H), 7.0 (br, 1 H)
<u>12a</u>	62.74 9.60 12.91 (62.95) (9.67) (12.91)	(CDC1 ₃) 0.6—1.8 (m, 25 H), 3.1 (d, 2 H, J « 6 Hz), 3.6—4.6 (m, 2 H), 7.2—8.1 (m, 2 H)
126	46.76 3.92 18.18 (46.75) (3.86) (18.03)	$(DMSO-d_{6})$ 3.2 (d, 2 H, J = 5 Hz), 4.0-4.6 (m, 3 H), 5.4 (d, 1 H, J = 5 Hz), 7.1 (d, 2 H, J = 9 Hz), 8.18 (d, 1 H, J = 9 Hz), 8.2-8.6 (m, 2 H)
<u>12c</u>	60.99 8.53 14.23 (60.89) (8.58) (14.22)	(DMSO-d ₆) 0.8—2.1 (m, 20 H), 3.4—4.2 (m, 2 H), 4.57 (d, 1 H, J = 5 Hz), 7.95 (br, 1 H), 8.3 (br, 1 H)
12g	56.65 4.75 18.02 (56.60) (4.77) (17.96)	(DMSO-d ₆) 3.3 (d, 2 H, J = 6 Hz), 5.0 (q, 1 H, J = 6 Hz), 5.55 (d, 1 H, J = 6 Hz), 7.3 (s, 5 H), 8.05 (br, 1 H), 8.4 (br, 1 H)
<u>25</u>	57.14 3.92 18.18 (56.65) (3.86) (18.17)	(DMSO-d ₆) 4.9 (s, 2 H), 7.3—7.8 (m, 3 H), 7.9—8.2 (m, 2 H), 8.5 (br, 2 H)
<u>26a</u>	65.54 9.35 7.64 (65.49) (9.31) (7.66)	(CDC1 ₃) 0.7—1.8 (m, 25 H), 2.17 (s, 3 H), 2.43 (s, 3 H), 2.5—3.5 (m, 2 H), 3.7—4.2 (m, 1 H)
<u>26b</u>	64.26 8.39 8.33 (64.19) (8.38) (8.30)	(CDCl ₃) 1.1-2.0 (m, 20 H), 2.15 (s, 3 H), 2.4 (s, 3 H), 3.2-3.7 (m, 1 H), 4.5-5.0 (m, 1 H)
<u>26c</u>	61.31 5.15 10.21 (61.27) (5.09) (10.06)	(CDCl ₃) 2.17 (s, 3 H), 2.5 (s, 3 H), 3.25 (dd, 1 H, J = 9 & 18 Hz), 3.73 (dd, 1 H, J = 11 & 18 Hz), 5.8 (dd, 1 H, J = 9 & 11 Hz), 7.35 (s, 5 H)
<u>26d</u>	66.81 3.67 8.99 (66.77) (3.71) (8.98)	(CDC1 ₃) 5.1 (d, 1 H, J = 10 Hz), 7.0-7.8 (m, 11 H), 7.9-8.2 (m, 4 H)
<u>26e</u>	63.75 4.01 7.96 (63.69) (4.01) (7.98)	(DMSO-d ₆) 3.85 (s, 3 H), 3.88 (s, 3 H), 5.42 (d, 1 H, J = 10 Hz), 5.93 (d, 1 H, J = 10 Hz), 6.9-7.6 (m, 9 H), 7.85-8.3 (m, 4 H)
27	61.74 3.83 9.39 (61.79) (3.77) (9.32)	(DMSO-d ₆) 2.25 (s, 3 H), 4.37 (d, 1 H, J ≖ 8 Hz), 4.57 (d, 1 H, J = 8 Hz), 5.03 (d, 1 H, J = 8 Hz), 5.7 (d, 1 H, J = 8 Hz), 7.1−7.8 (m, 10 H)

Table 9. Cont.

<u>11a</u>	66.63	9.94	8.63	(CDC1 ₃) 0.6—2.0 (m, 25 H), 2.45 (s, 3 H), 3.05 (dd, 1 H, J = 9 & 18 Hz),
	(66.64)	(9.89)	(8.64)	3.53 (dd, 1 H, J = 10 & 18 Hz), 4.3—4.9 (m, 1 H), 12.8 (br, 1 H)
<u>116</u>	65.28	8.90	9.52	(CDC1 ₃) 1.0-2.2 (m, 20 H), 2.5 (s, 3 H), 3.7-4.2 (m, 1 H),
	(65.23)	(8.91)	(9.49)	4.5-4.9 (m, 1 H), 12.8 (br, 1 H)
<u>28a</u>	65.31	7.79	4.01	(CDCl ₃) 1.0-2.2 (m, 20 H), 3.3-3.8 (m, 1 H), 4.6-5.0 (m, 1 H),
	(65.48)	(7.86)	(4.10)	7.4-7.9 (m, 3 H), 7.9-8.2 (m, 2 H)
<u>28b</u>	57.33	5.16	4.78	(CDC1 ₃) 1.0—1.9 (m, 6 H), 2.5 (br, 1 H), 3.63 (d, 1 H, J = 8 Hz),
	(57.61)	(5.13)	(4.68)	4.6 (d, 1 H, J = 8 Hz), 7.5—7.9 (m, 3 H), 7.9—8.2 (m, 2 H)
<u>30a</u> (ex—en)	63.01	4.08	10.02	(DMSO-d _G) 1.45 (s. 3 H), 3.9 (d, 1 H, J = 8 Hz), 4.4 (d, 1 H, J = 8 Hz),
	(63.32)	(4.08)	(10.01)	4.93 (d, 1 H, J = 8 Hz), 5.75 (d, 1 H, J = 8 Hz), 7.0→7.8 (m, 10 H)
<u>30b</u> (ex—en)	52.01 (51.81)	5.30 (5.21)	13.00 (12.82)	(DMSO-d ₆) 1.0 (t, 6 H, J = 7 Hz), 1.3 (s, 3 H), 3.4 (q, 2 H, J = 7 Hz), 3.6 (d, 1 H, J = 8 Hz), 4.13 (d, 1 H, J = 8 Hz), 4.6 (d, 1 H, J = 8 Hz), 5.5 (d, 1 H, J = 8 Hz)
<u>30c</u> (ex-en)	54. 69 (54.41)	6.02 (6.02)	11.96 (11.89)	(DMSO-d ₆) 0.77 (t, 3 H, J = 7 Hz), 0.83 (t, 3 H, J = 7 Hz), 1.11.9 (m, 4 H), 1.27 (s, 3 H), 3.3 (t, 2 H, J = 7 Hz), 3.35 (t, 2 H, J = 7 Hz), 3.6 (d, 1 H, J = 8 Hz), 4.17 (d, 1 H, J = 8 Hz), 4.6 (d, 1 H, J = 8 Hz), 5.5 (d, 1 H, J = 8 Hz)
<u>31a</u> (ex-en)	63.73 (63.69)	4.42 (4.40)	9.70 (9.66)	$(DMSO-d_6)$ 1.15 (t, 3 H, J = 7 Hz), 1.5-2.1 (m, 2 H), 3.9 (d, 1 H, J = 8 Hz), 4.4 (d, 1 H, J = 8 Hz), 4.9 (d, 1 H, J = 8 Hz), 5.7 (d, 1 H, J = 8 Hz), 7.1-7.8 (m, 14 H)
<u>32a</u> (ex-ex)	61.63	6.90	9.58	$(CDC1_3)$ 0.8–1.9 (m, 12 H), 2.2–2.6 (m, 4 H), 2.8 (d, 2 H, J = 6 Hz),
	(61.53)	(6.94)	(9.52)	4.6 (d, 2 H, J = 6 Hz)
<u>32b</u> (ex-ex)	65.37 (65.33)	5.16 (5.18)	8.97 (8.98)	(CDC1 ₃) 2.9—3.4 (m, 4 H), 5.75 (dd, 2 H, J = 7 & 10 Hz), 7.4 (s, 10 H)
<u>32b</u> (ex-en)	65.37	5.16	8.97	(CDC1 ₃) 2.3—3.8 (m, 4 H), 5.3 (dd, 1 H, J = 5 & 11 Hz),
	(65.39)	(5.16)	(8.99)	5.9 (dd, 1 H, J = 6 & 11 Hz), 7.4 (s, 10 H)
<u>32c</u>	67.56 (67.56)	4.54 (4.58)	6.30 (6.22)	$(DMSO-d_6)^3.4-3.8 (m, 4 H), 6.6 (t, 2 H, J = 4 Hz), 7.0-8.1 (m, 14 H)$
<u>33</u>	65.09	6.50	3.62	$(CDC1_3)$ 0.5-2.0 (m, 12 H), 2.0-2.6 (m, 4 H), 3.05 (d, 2 H, J = 6 Hz),
	(65.16)	(6.59)	(3.56)	4.73 (d, 2 H, J = 6 Hz), 7.3-7.8 (m, 3 H), 8.0-8.3 (m, 2 H)

The reaction of 3-cyano-4,5-decamethylene (or hexamethylene)-2-isoxazoline-2-oxide (13p or 13q) or 7a,4a-dihydro-1,4methano-7-(N-methyl)carbamoyl-isoxazolo [7a,4a-d]cyclohexene-6-oxide (22d) with dipolarophiles.

An equimolar mixture of 13p (or 13q or 22d) (2 mmol) and dipolarophile was heated under reflux in xylene (20 ml) for 24 hr. After evaporation of the solvent, the residue was chromatographed (silica gel) with CHCl₃ to give cycloadducts (15 or 24). Yields and m.p. are shown in Table 4. Those of 24 are as follows; 40% yield, m.p. 220-222°, IR (nujol): 3370(NH) and 1660 cm⁻¹ (C = 0), NMR (CDCl₃) δ : 0.9-1.8 (m, 6H), 2.2-3.0 (m, 5H), 2.85 (d, 1H, J = 5 Hz), 4.0-5.1 (m, 4H), 6.6-7.1 (br, 1H, NH), 6.9 (d, 2H, J = 10 Hz), and 8.2 (d, 2H, J = 10 Hz). (Found: C, 58.37; N, 10.79%.)

Reaction of N,N'-diallylfuroxandicarboxamide (5d) with N-phenylmaleimide

An equimolar amounts (3 mmol) of **5d** and Nphenylmaleimide were heated under reflux in toluene (20 ml) for 24 hr. After evaporation of the solvent, the residue was recrystallized from EtOH; m.p. 195–197°, yield: 88%, NMR (DMSO- d_{k}) δ : 2.9–4.6 (m, 5H), 4.1 (d, 1H, J = 8 Hz), 5.43 (d, 1H, J = 8 Hz), 7.1–7.7 (m, 5H), and 8.4 (br, 1H, NH). (Found: C, 57.15; H, 4.15; N, 13.60. Calc. for $C_{15}H_{13}N_3O_5\colon$ C, 57.14; H, 4.16; N, 13.33%.)

Reaction of 4 or 7 with 1,5-cyclooctadiene

Equimolar amounts (10 mmol) of 4 (or 7) and 1,5-cyclooctadiene was heated under reflux in toluene (30 ml) for 24 hr. After evaporation of the solvent, the residue was chromatographed (silica gel) with CHCl₃ to give cycloadducts (35a or 35b); 35a: 15%, yield, m.p. 196–198° (from EtOH); IR (nujol): 2250 cm⁻¹ (CN); NMR (CDCl₃) δ : 1.9–2.5 (m, 8H), 3.3–3.7 (m, 2H), and 4.5–4.85 (m, 2H); mass spectrum; m/e 192 (M⁺). (Found: C, 62.33; H, 6.32; N, 14.58. Calc. for C₁₀H₁₂N₂O₂: C, 62.48; H, 6.29; N, 14.58.) *Compound* 35b: 30% yield, m.p. 199–201° (from EtOH); IR (nujol): 1140 cm⁻¹ (SO₂); NMR (CDCl₃) δ : 1.7–2.8 (m, 8H), 3.3–3.7 (m, 2H), 4.4–4.8 (m, 2H), 7.3–7.8 (m, 3H), and 7.95–8.25 (m, 2H); mass spectrum; m/e 307 (M⁺). (Found: C, 58.82; H, 5.63; N, 4.60. Calc. for C₁₃H₁₇NO₄S: C, 58.63; H, 5.58; N, 4.56%.)

Reaction of 4 with norbornadiene

A mixture of 4 (1.36 g, 10 mmol) and norbornadiene (1.5 g, 16 mmol) was heated under reflux in toluene (30 ml) for 24 hr. After evaporation of the solvent, the residue was

chromatographed (silica gel) with $CHCl_3$ to give the crystalline products. Fractional recrystallization from EtOH gave 36 (30%) and 37 (14%).

Compound 36: m.p. $158-160^{\circ}$, IR (nujol): 2250 cm^{-1} (CN); NMR (CDCl₃) δ : 1.6-2.3 (m, 4H), 2.6-2.8 (m, 2H), 2.9-3.3 (m, 4H), 4.6-4.9 (m, 2H), and 6.0-6.4 (m, 4H). (Found: C, 71.25; H, 5.98; N, 10.51. Calc. for C₁₆H₁₆N₂O₂: C, 71.62; H, 6.01; N, 10.44%.)

Compound 37: m.p. 280° (dec.), IR (nujol): 2250 cm⁻¹ (CN); NMR (CDCl₃: DMSO-d₆ = 1:1) δ : 1.55–2.2 (m, 6H), 2.5–3.5 (m, 10H), 4.05–4.35 (m, 2H), 4.7–5.0 (m, 2H), and 6.1–6.6 (m, 4H). (Found: C, 67.36; H, 5.46; N, 12.49. Cakc. for C₂₃H₂₄N₂O₂: C, 67.55; H, 5.44; N, 12.61%.)

REFERENCES

¹T. Shimizu, Y. Hayashi and K. Teramura, J. Org. Chem. 48, 3053 (1983).

^{2a}R. A. Whitney and E. S. Nicholas, *Tetrahedron Letters* 22, 3371 (1981); ^bW. R. Mitchell and R. M. Paton, *Ibid.* 2443 (1979) and refs therein; ³J. Ackrell, M. Altaf-ur-Rahman, A. J. Boulton and R. C. Brown, J. Chem. Soc. Perkin Trans. 1 1587 (1972); ⁴A. J. Boulton and S. S. Mathur, J. Org. Chem. 38, 1054 (1973); ⁴A. Dondoni, G. Barbaro, A. Gattaglia and P. Giorgianni, *Ibid.* 37, 3196 (1972).

³D. R. Britteli and G. A. Boswell, Jr., *Ibid.* 46, 316 (1981) and refs therein.

⁴A. Gasco, V. Mortarini, R. Calvino and A. Serafino, *Tetra*hedron Letters 627 (1974).

⁵A. Gasco and A. J. Boulton, J. Chem. Soc. Perkin Trans.

2 1613 (1973); ^bJ. Ackrell and A. J. Boulton, *Ibid. Perkin* Trans. 1 351 (1973); ^cA. Gasco, V. Mortarini, G. Rua, G. M. Nano and E. Menziani, J. Heterocycl. Chem. 9, 577 (1972); ⁴A. Gasco, V. Mortarini, G. Rua and E. Menziani, *Ibid* 9, 837 (1972); ⁴A. Gasco, V. Mortarini, G. Rua and A. Sarafino, *Ibid*. 10, 587 (1973).

⁶⁶K. N. Houk, J. Sims, R. E. Duke, Jr., W. R. Strozier and J. K. Jeorge, J. Am. Chem. Soc. 95, 7287 (1973); ⁶K. N. Houk, J. Sims, C. R. Watts and L. J. Luskus, *Ibid.* 95, 7301 (1973).

⁷^aA. P. Kozikowski and M. Adamczyk, *J. Org. Chem.* **48**, 366 (1983); ^bC. Grundmann and H-D. Frommeld, *Ibid.* **31**, 4235 (1966).

- ⁸C. E. Daígliesh, A. W. Johnson and C. Buchanan, *Chemistry of Carbon Compounds* (Edited by E. H. Rodd), Vol. 1, p. 976. Elsevier, Amsterdam (1952).
- ⁹R. M. Silverstein and G. C. Bassler, *Spectrometric Identification of Organic Compounds*, 2nd Edn. Wiley, New York (1967).
- ¹⁰C. O. Parker, W. D. Emmons, H. A. Rolewicz and K. S. McCallum, *Tetrahedron* 17, 79 (1962).
- ¹¹H. R. Snyder and N. E. Boyer, J. Am. Chem. Soc. 77, 4233 (1955).
- ¹²K. Schoenafinger, R. Beyerle, A. Mogilev, H. Bohn, M. Just and P. A. Martorana, *Eur. Pat. Appl.*, No. 54,872 (1982); *Chem. Abstr.* 97, 216189u (1982).
- ¹³W. V. Farrar, J. Chem. Soc. 904 (1964).
- ¹⁴L. I. Peterson, Tetrahedron Letters 1727 (1966).
- ¹⁵Y. Yukawa and M. Sakai, Nippon Kagaku Zasshi 87, 79 (1966).
- ¹⁶A. D. Nikolaeva, Yu. N. Matyushin, V. I. Pepekin, V. S. Smelov, V. V. Bulidorov, T. I. Bulidorova and A. Ya. Apin, *Izv. Akad. Nauk SSSR, Ser. Kim.* 965 (1972); *Chem. Abstr.* 77, 75165f (1972).