Synthesis and Molecular Structure of the Novel Bimetallic Complex [{CoCl₂Ph₂P(O)CH₂CH₂P(O)Ph₂}₂], containing a 14-Membered Ring

Saud I. Al-Resayes,† Peter B. Hitchcock and John F. Nixon*

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, Sussex, UK

The novel 14-membered ring complex [{CoCl₂Ph₂P(O)CH₂CH₂P(O)Ph₂}₂] is the cyclic analogue of the previously described infinite chain *catena*-complex.

Inorganic ring and chain compounds have been widely studied but examples of both cyclic and oligomeric chain isomers are mainly encountered in main group chemistry.¹⁻⁴ We now describe the synthesis and structural characterisation of the novel bimetallic complex [{CoCl₂Ph₂P(O)CH₂CH₂-P(O)Ph₂}₂], 1, containing a 14-membered ring, which is the cyclic analogue of the previously reported^{5,6} polymeric chain compound *catena*-dichloro- μ -[1,2-bis(diphenylphosphinoyl)-ethane]-cobalt(II), [{CoCl₂Ph₂P(O)CH₂CH₂P(O)Ph₂}_n], 2.

Although the coordination chemistry of phosphine oxides, $R_3P(O)$, with transition metals, $^{7-9}$ lanthanides 10 and actinides 11 has been extensively studied, less emphasis has been placed on bis(phosphine oxides), e.g. $Ph_2P(O)(CH_2)_2-P(O)Ph_2$ or hybrid phosphine–phosphine oxide ligands such as $Ph_2P(CH_2)_nP(O)Ph_2$ (n = 1-4). 12

Treatment of CoCl₂ in acetone with Ph₂PCH₂CH₂PPh₂ gave a green solution, which on careful addition of H₂O₂ afforded the bis(diphenylphosphine oxide) complex [{CoCl₂Ph₂P(O)CH₂CH₂P(O)Ph₂}₂], 1, as bright blue crystals (80% yield).‡ The molecular structure of 1 established

by a single crystal X-ray study§ is shown in Fig. 1. The unit cell contains two molecules of the complex each containing the novel 14-membered ring system. The cobalt atoms are in a roughly tetrahedral environment ligated to two oxygens and two chlorine atoms. The cyclic structure of 1 is completely different from that previously reported for the *catena*-isomer 2 shown in Fig. 2 [which was synthesised directly from CoCl₂ and Ph₂P(O)CH₂CH₂P(O)Ph₂], but there are considerable similarities in bond lengths and bond angles in 1 and 2 (see Table 1). Interestingly the Co(1)–O(1)–P(1) bond angles in molecules 1 and 2 of complex 1 [138.9(2) and 137.7(2)° respectively], show significant differences from the corresponding Co(1')–O(2)–P(2) bond angles [145.9(2) and

§ Crystal data: C₅₂H₄₈Cl₄Co₂O₄P₄, M=1120.5, triclinic, space group $P\bar{1}, a=10.558(2), b=13.907(3), c=18.347 Å, α=75.35(1), β=81.40(1), γ=78.68(1)°, <math>U=2541.3$ ų, $Z=2, D_c=1.45$ g cm⁻³, monochromated Mo–Kα radiation, $\lambda=0.71069$ Å, $\mu=8.6$ cm⁻¹.

The structure was solved by direct methods with 5817 reflections having $I>\sigma(I)$ measured on an Enraf-Nonius CAD4 diffractometer used in the refinement by full-matrix least-squares with anisotropic thermal parameters. The final residuals were R=0.045, $R_{\rm w}=0.054$. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

[†] Present address: Chemistry Department, King Saud University, Riyadh, Saudi Arabia.

[‡] Satisfactory elemental analyses were obtained.

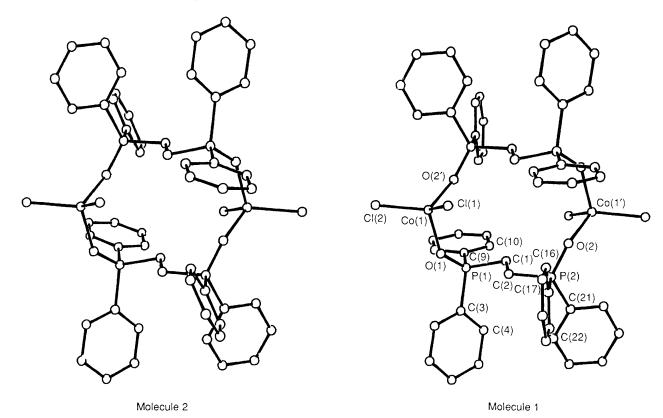


Fig. 1 Structures of the two molecules in the unit cell of the cyclic complex [{CoCl₂Ph₂P(O)CH₂CH₂P(O)Ph₂}₂], 1

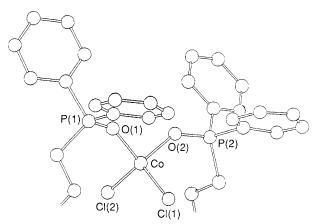


Fig. 2 Molecular structure of the catena-complex [{CoCl₂Ph₂-P(O)CH₂CH₂P(O)Ph₂_n], 2 (modified from ref. 5)

Table 1 Comparison of crystallographic data for 1^a and 2

	14-Membered ring complex 1 ^b	Catena-complex 2 ^b
a/Å b/Å c/Å	10.558(2) 13.907(3) 18.347(3)	14.814(4) 12.195(2) 8.834(3)
α/° β/° γ/°	75.35(1) 81.40(1) 78.68(1)	115.13(1) 86.57(3) 109.07(2)
Co–Cl ^c P=O ^c	2.244(2), 2.211(2) 1.975(3), 1.984(3) 1.499(3)	2.246(3), 2.252(3) 1.972(6), 1.975(6) 1.478(6), 1.479(6)
Cl-Co-Cl ^d O-Co-O ^d Cl-Co-O ^d	115.9(6) 101.9(1) 108.4(1), 107.9(1) 114.2(1), 101.9(1)	114.7(1) 102.7(2) 108.6(2), 111.6(2)

^a Bond length data for molecule 1. ^b Blue crystals, triclinic, space group PI. c Distance in Å. d Angles in degrees.

148.0(2)° respectively], which exactly parallels the behaviour previously noted⁵ for the Co-O-P angles in the two halves of the catena-complex 2 [138.7(4) and 147.8(4)° respectively]. This has been atttributed⁵ to the orientation of the phenyl rings relative to the CoCl₂ moiety (see Figs. 1 and 2).

The in situ oxidation of simple mononuclear transition metal complexes containing diphosphine ligands may offer a general synthetic route to ring complexes and this is currently under study.

We thank the Saudi Arabian government for financial support (for S. I. Al-R).

Received, 10th September 1990; Com. 0/04121A

References

- 1 F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley and Sons, New York, 5th edn.
- 2 J. E. Huheey, Inorganic Chemistry, Harper International, 1983, 3rd edn., ch. 14.
- 3 I. Haiduc and D. B. Sowerby, The Chemistry of Inorganic Homo and Heterocycles, Academic Press, London, vols. 1 and 2.
- 4 J. D. Woollins, Non Metal Rings, Cages and Clusters, Wiley and Sons, 1988
- 5 G. R. Clark and G. J. Palenik, Cryst. Struct. Commun., 1977, 8, 261.
- 6 S. S. Sandhu and R. S. Sandhu, Chem. Ind., 1970, 626.
 7 N. M. Karayannis, C. M. Mikulsi and L. L. Pytlewski Inorg. Chim. Acta, Rev., 1971, 5, 69.
- R. J. Butcher, B. R. Penfold and E. Sinn, J. Chem. Soc., Dalton Trans., 1979, 668.
- 9 J. F. Dewitt, M. R. Gaira and B. J. Gellatly, Acta Crystallogr., Sect. B, 1978, 34, 762.
- 10 D. C. Bradley, J. S. Ghotra, F. A. Hart, M. B. Hurthouse and P. R. Raithby, J. Chem. Soc., Dalton Trans., 1977, 1166.
- J. G. H. du Preez, B. J. Gellatly and M. L. Gibson, J. Chem. Soc., Dalton Trans., 1977, 1062.
- S. J. Higgins, R. Taylor and B. L. Shaw, J. Organomet. Chem., 1987, 325, 285 and references cited therein.