Interaction of Organic Carbonyls with Sterically Crowded Aryloxide Compounds of Aluminum Michael B. Power, ^{1a} Simon G. Bott, ^{1b,c} David L. Clark, ^{1b,d} Jerry L. Atwood, ^{1b} and Andrew R. Barron*, ^{1a} Department of Chemistry and Materials Research Laboratory, Harvard University, Cambridge, Massachusetts 02138, and Department of Chemistry, University of Alabama, Tuscaloosa, Alabama 35486 Received June 26, 1990 The interaction of AlR(BHT)₂ and AlR₂(BHT)(OEt₂) (R = Me, Et) with organic carbonyls O=C(X)R (X = H, R', OR, NR₂) leads to the formation of the Lewis acid-base complexes AlR(BHT)₂[O=C(X)R] and AlR₂(BHT)[O=C(X)R], respectively. The aluminum-methyl ¹³C NMR chemical shifts for the methyl aryloxide compounds AlMe(BHT)₂[O=C(X)R] and AlMe₂(BHT)[O=C(X)R] are found to be dependent primarily on the steric bulk of the substituents, X and R, on the carbonyl ligand. In contrast, the decrease in the carbonyl stretching frequency in the IR spectrum, and the downfield shift in the ¹³C NMR spectrum for the carbonyl α -carbon of the carbonyl adducts, when compared to those of the "free" carbonyls, is dependent on the electron-donating ability of X. The molecular structures of AlMe(BHT)₂[O=C(H)Bu¹] (1), AlMe₂(BHT)(O=CPh₂) (8), and AlMe(BHT)₂[O=C(OMe)Ph] (17) have been determined by X-ray crystallography. The mode of coordination of the organic carbonyls to aluminum is discussed. Crystal data for 1: monoclinic, $P2_1/n$, a = 10.0765 (5) Å, b = 26.201 (2) Å, c = 14.0106 (4) Å, $\beta = 103.638$ (3)°, Z = 4, R = 0.0576, $R_w = 0.0623$. Crystal data for 8: orthorhombic, $Pn2_1a$, a = 19.133 (3) Å, b = 14.638 (2) Å, c = 10.022 (1) Å, Z = 4, R = 0.0552, $R_w = 0.0550$. Crystal data for 17: triclinic, P1, a = 9.394 (2) Å, b = 9.741 (3) Å, c = 23.091 (7) Å, $\alpha = 91.43$ (2)°, $\beta = 91.93$ (2)°, $\gamma = 116.41$ (2)°, Z = 2, R = 0.0599, $R_w = 0.0689$. ## Introduction Despite the diverse range of reactions reported to occur between organic carbonyls and organoaluminum compounds,^{2,3} the latter's use as reagents in organic synthesis has been traditionally limited due to the occurrence of multiple reaction products from a single substrate. For example, the reaction of acetaldehyde with AlEt₃ results in both alkyl addition to and reduction of the carbonyl Secondary reactions include the Meerwein-Ponndorf-Verley reduction, the Oppenauer oxidation, and the Tischenko reaction with both acetaldehyde and the primary reaction products. It is therefore not surprising that much research effort has been aimed toward the development of new organoaluminum compounds, for use as both reaction-specific and also stereospecific reagents and catalysts.⁵ In this regard work in our laboratory has focused on the synthesis and characterization of monomeric aluminum complexes derived from the sterically hindered 2,6-di-tert-butyl-4-methylphenol (I; BHT-H, from the trivial name butylated hydroxytoluene).6-8 We believe that the future development of new organoaluminum reagents for organic synthesis must be based upon an intimate understanding of the steric and electronic effects controlling the coordination, and subsequent reactivity, of organic substrates with organoaluminum compounds. It is toward this end that we have undertaken a comprehensive investigation of the interaction of organic carbonyls with the organoaluminum aryloxide compounds Table I. Selected Bond Lengths (Å) and Angles (deg) in AlMe(BHT), [O=C(H)*Bu] (1) | Aime(BH1) ₂ [O—C(H)·Bu] (1) | | | | | | | |--|-----------|------------------|-----------|--|--|--| | Al-O(1) | 1.726 (3) | Al-O(2) | 1.729 (3) | | | | | Al-O(3) | 1.920(3) | Al-Me | 1.955 (4) | | | | | O(1)-C(1) | 1.372(5) | O(2)-C(11) | 1.370(4) | | | | | O(3)-C(31) | 1.164 (5) | C(31)-C(32) | 1.481 (6) | | | | | O(1)-Al-O(2) | 113.6 (1) | O(1)-Al-O(3) | 104.9 (1) | | | | | O(1)-Al-Me | 110.1(2) | O(2)-Al-O(3) | 97.5 (1) | | | | | O(2)-Al-Me | 122.2 (2) | O(3)-Al-Me | 106.0 (2) | | | | | Al-O(1)-C(1) | 131.3 (2) | Al-O(2)-C(11) | 140.5 (2) | | | | | Al-O(3)-C(31) | 136.0 (3) | O(3)-C(31)-C(32) | 129.4 (5) | | | | $AlR_x(BHT)_{3-x}$ (R = Me, Et; x = 1, 2), the results of which are the subject of this paper. # Results and Discussion **Aldehydes.** The interaction of AlMe(BHT)₂^{6,9} with $O=C(H)^tBu$, $O=C(H)C_6H_4$ -p-Me, and $O=C(H)C_6H_4$ -p-Cl (2) Eisch, J. J. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, England, 1983; Vol. 1, Chapter 6, p 644. (3) Zietz, J. R., Jr.; Robinson, G. C.; Lindsay, K. L. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, England, 1983; Vol. 6, Chapter 46, p 365. (4) Araki, T.; Hayakawa, K.; Aoyagi, T.; Nakano, Y.; Tani, H. J. Org. Chem. 1973, 38, 1130. (5) See for example: (a) Yasuda, A.; Tanaka, S.; Oshima, K.; Yamamoto, H.; Nozaki, H. J. Am. Chem. Soc. 1974, 96, 6513. (b) Yamamoto, H.; Nozaki, H. Angew. Chem., Int. Ed. Engl. 1978, 17, 169. (c) Maruoka, K.; Itoh, T.; Yamamoto, H. J. Am. Chem. Soc. 1985, 107, 4573. (d) Stern, A. J.; Swenton, J. S. J. Chem. Soc., Chem. Commun. 1988, 1255. (e) Stern, A. J.; Rohde, J. J.; Swenton, J. S. J. Org. Chem. 1989, 54, 4413. (6) Healy, M. D.; Wierda, D. A.; Barron, A. R. Organometallics 1988, 7, 2543. (7) Healy, M. D.; Ziller, J. W.; Barron, A. R. J. Am. Chem. Soc. 1990, 112, 2949. (8) Healy, M. D.; Power, M. B.; Barron, A. R. J. Coord. Chem. 1990, 21, 363. (9) Starowieyski, K. B.; Pasynkiewicz, S.; Skowronska-Ptasinska, M. J. Organomet. Chem. 1975, 90, C43. ^{*} To whom correspondence should be addressed. ^{(1) (}a) Harvard University. (b) University of Alabama. (c) Present address: University of North Texas, Denton, TX 76203. (d) Present address: Los Alamos National Laboratory, Los Alamos, NM 87545. Figure 1. Structure of AlMe(BHT)₂[O=C(H)^tBu] (1). Thermal ellipsoids are drawn at the 30% level, and the hydrogen atoms [except that bonded to C(31)] are omitted for clarity. yields the Lewis acid-base complexes AlMe(BHT)₂[O= $C(H)^{t}Bu]$ (1), $AlMe(BHT)_{2}[O=C(H)C_{6}H_{4}-p-Me]$ (2), and AlMe(BHT)₂[O= $C(H)C_6H_4$ -p-Cl] (3), respectively (eq 1). $$AlMe(BHT)_2 + O = C(H)R \rightarrow$$ $$AlMe(BHT)_2[O=C(H)R]$$ (1) Compounds 1-3 have been characterized by elemental analysis and ¹H and ¹³C NMR and IR spectroscopy (see Experimental Section). As we have observed previously for the ketone adducts AlMe(BHT)₂(O=CR₂),¹⁰ the aldehyde complexes exhibit a downfield shift in the ¹³C NMR spectrum for the carbonyl α -carbon and a decrease in the carbonyl stretching frequency when compared to those of the "free" aldehyde, consistent with the coordination of the carbonyl group of the aldehyde to aluminum. Compounds 1-3 are indefinitely stable under an inert atmosphere, showing no further reaction of the coordinated aldehyde. The molecular structure of 1 has been determined by X-ray crystallography and is shown in Figure 1. Selected bond lengths and angles are given in Table I. The geometry around aluminum is distorted from tetrahedral; the angles associated with the aldehyde oxygen are the most acute. The Al-C bond length in 1 [1.954 (4) Å] is slightly larger than that found for AlMe(BHT)₂ [1.927 (3) Å].11 This change is in the direction predicted on the basis of increased p character in the Al-C bond on changing from planar to pseudotetrahedral geometry. The aldehyde Al-O bond distance [1.920 (3) Å] is within the normal range, 1.8-2.0 Å.¹² In contrast, the shorter aryloxide Al-O distances [1.766 (3), 1.729 (3) Å] indicate a degree of π bonding between the oxygen lone pairs and aluminumcentered σ* orbitals.6,7 Adduct formation is not observed between AlMe₂(BHT) and a wide range of aldehydes; instead a novel hydridemethyl exchange reaction occurs to give the corresponding methyl ketone upon hydrolysis (eq 2).^{13,14} The initial step $$O = C(H)R \xrightarrow{(i) AlMe_2(BHT)(OEt_2)} O = C(Me)R \qquad (2)$$ of this unique aldehyde to ketone conversion is undoub- #### Scheme II tedly the substitution of Et₂O, resulting in the formation of the aldehyde complex. If the reaction is carried out in pentane, some of the aldehyde adducts have limited solubility and can be isolated quantitatively for O=C- $(H)C_6H_4$ -p-Me and O=C(H)C $_6H_4$ -p-Cl. The resulting complexes AlMe₂(BHT)[O=C(H)C₆H₄-p-Me] (4) and $AlMe_2(BHT)[O=C(H)C_6H_4-p-Cl]$ (5) are stable as solids but slowly decompose in benzene, toluene, or ether solution to give the corresponding methyl ketone complexes (vide infra).13 On the basis of (a) the required stoichiometry for the reaction, a minimum of 1.5 equiv of AlMe₂(BHT)(OEt₂) being required for the reaction to proceed to completion, (b) literature precedent for the alkylation of organic carbonyls by AlMe₃, 15-18 and (c) the presence of a transient species with a OCH(Me)R ligand and a possible bridging methyl, we have proposed the mechanism shown in Scheme I. One molecule of AlMe₂(BHT)(OEt₂) is required for the coordination of the aldehyde, while a second equivalent of AlMe₂(BHT)(OEt₂) acts as the methyl source for two aldehyde to ketone conversions. Ashby et al.15 have demonstrated that the rate-controlling step in the alkylation of benzophenone by trimethylaluminum (Scheme II) is the attack of monomeric ⁽¹⁰⁾ Power, M. B.; Bott, S. G.; Atwood, J. L.; Barron, A. R. J. Am. Chem. Soc. 1990, 112, 3446. (11) Shreve, A. P.; Mulhaupt, R.; Fultz, W.; Calabrese, J.; Robbins, W.; Ittel, S. D. Organometallics 1988, 7, 409. ⁽¹²⁾ See for example: (a) Zaworotko, M. J.; Rogers, R. D.; Atwood, J. L. Organometallics 1982, 1, 1179. (b) Atwood, J. L.; Zaworotko, M. J. J. Chem. Soc., Chem. Commun. 1983, 302. ⁽¹³⁾ Power, M. B.; Barron, A. R. Tetrahedron Lett. 1990, 31, 323. ⁽¹⁴⁾ Power, M. B.; Barron, A. R. Polyhedron 1990, 9, 233. ⁽¹⁵⁾ Ashby, E. C.; Laemmle, J.; Neumann, H. N. J. Am. Chem. Soc. 1968, 90, 5179. ⁽¹⁶⁾ Ashby, E. C.; Laemmle, J. J. Org. Chem. 1968, 33, 3398.
(17) Ashby, E. C.; Yu, S. H.; Roling, P. V. J. Org. Chem. 1972, 37, 1918. (18) Ashby, E. C.; Laemmle, J. T. J. Org. Chem. 1975, 40, 1469. Figure 2. Structure of AlMe₂(BHT)(O=CPh₂) (8). Thermal ellipsoids are drawn at the 30% level, and hydrogen atoms are omitted for clarity. Table II. Selected Bond Lengths (Å) and Angles (deg) in $AlMe_2(BHT)(O=CPh_2)$ (8) | 111111111111111111111111111111111111111 | | | | | | | |---|-----------|--------------------|-----------|--|--|--| | Al-O(1) | 1.731 (8) | Al-O(2) | 1.907 (8) | | | | | Al-Me(1) | 1.96(1) | Al-Me(2) | 1.94(1) | | | | | O(1)-C(1) | 1.36(1) | O(2)-C(100) | 1.24(1) | | | | | C(100)-C(101) | 1.51(2) | C(100)-C(107) | 1.47(2) | | | | | O(1)-Al-O(2) | 103.1 (4) | O(1)-Al-Me(1) | 114.9 (6) | | | | | O(1)-Al-Me(2) | 119.4 (6) | O(2)-Al-Me(1) | 101.5 (5) | | | | | O(2)-Al-Me(2) | 101.2 (5) | Me(1)-Al- $Me(2)$ | 113.1 (8) | | | | | Al-O(1)-C(1) | 157.7 (8) | Al-O(2)-C(100) | 153.8 (9) | | | | | O(2)-C(100)-C(101) | 116 (1) | O(2)-C(100)-C(107) |) 124 (1) | | | | AlMe₃ on the complex AlMe₃(O=CPh₂). If this holds true for the reaction shown in Scheme I, then the only assumption that must be made is that the rotation of the oxygen-carbon single bond must be rapid in comparison to the rate of dissociation of the methyl-bridged dimer. This is certainly plausible, given that the activation energies of these processes can be estimated to be 3-8 and 11-15 kcal mol⁻¹, respectively.¹⁹ The presence of electron-withdrawing substituents on the aldehyde should enhance the initial nucleophilic addition of methyl to the aldehyde, and this is indeed observed.¹³ In order to ascertain if the opposite electronic effect is present, i.e., electron-donating substituents should inhibit the reaction, we have investigated the reaction of $AlMe_2(BHT)(OEt_2)$ with $O=C(H)C_6H_4$ -p-OMe. The addition of $O=C(H)C_6H_4$ -p-OMe to a benzene solution of AlMe₂(BHT)(OEt₂) results in the formation of the stable deep orange complex AlMe₂(BHT)[O=C-(H)C₆H₄-p-OMe] (6). As predicted, compound 6 does not react further and is stable in refluxing toluene. Ketones. Addition of cyclopentanone, O=C(CH₂)₃C-H₂, to a pentane solution of AlMe(BHT)₂ at room temperature results in the formation of AlMe(BHT)₂- $[O=C(CH_2)_3CH_2]$ (7), as a pale yellow crystalline solid. Compound 7 is chemically similar to the series of ketone adducts of AlMe(BHT)₂ that we have reported previously.10 The ketone complexes of AlMe(BHT)₂ are all stable in solution, in direct contrast to the ketone complexes of AlEt(BHT)2, in which the ketone readily undergoes reduction²⁰ or enolization.²¹ A. R. Organometallics 1990, 9, 2529. Figure 3. Structure of AlMe(BHT)₂[O=C(OMe)Ph] (17). Thermal ellipsoids are drawn at the 30% level, and hydrogen atoms are omitted for clarity. Addition of 1 equiv of a series of ketones, $O=CR_2$, to either an equimolar mixture of AlMe3 and BHT-H or $AlMe_2(BHT)(OEt_2)$, at room temperature, yields the expected ketone complexes, AlMe₂(BHT)(O=CR₂) (8-15; see Experimental Section). The molecular structure of one of these compounds, AlMe₂(BHT)(O=CPh₂) (8), has been determined by X-ray crystallography. The molecular structure of 8 is shown in Figure 2, and selected bond lengths and angles are given in Table II. Although the high standard deviations in the structural parameters (see Experimental Section) preclude a detailed comparison with other structures, the bond lengths and bond angles around aluminum are within the ranges observed previously for other complexes of AlMe₂(BHT),^{6,7} and the bond lengths and angles of the benzophenone are, within experimental error, identical with those observed for $AlMe(BHT)_2(O=CPh_2).^{10}$ In contrast to the AlMe(BHT)₂(ketone) complexes, the AlMe₂(BHT)(ketone) complexes (8-15) slowly decompose in pentane solution to give a complex mixture of products. The only exception is $AlMe_2(BHT)[O=C(Et)Ph]$ (9), which decomposes in the presence of a second equivalent of O=C(Et)Ph to give the β -oxo enolate complex AlMe(BHT)[O=C(Ph)CH(Me)C(Et)(Ph)O] (16) (eq 3). $AlMe_2(BHT)[O=C(Et)Ph] + O=C(Et)Ph \rightarrow$ $16 + CH_4$ (3) The ¹H and ¹³C NMR spectra of 16 indicate the presence of a single isomer. We have previously observed the same reactivity and stereospecificity for the aluminum ethyl analogue.21 Methyl Benzoate. The interaction of O=C(OMe)Ph in pentane with $AlR(BHT)_2$ and $AlR_2(BHT)$ (R = Me, Et) results in the formation of the aluminum ester complexes $AlR(BHT)_{2}[O=C(OMe)Ph]$ (R = Me (17), Et (18)) and $AlR_2(BHT)[O=C(OMe)Ph]$ (R = Me (19), Et (20)). The ester complexes undergo no further reaction and are in- ⁽¹⁹⁾ Stanford, T. B.; Henold, K. L. Inorg. Chem. 1975, 14, 2426. (20) Power, M. B.; Barron, A. R. Abstracts of Papers, 20th Northeast Regional Meeting of the American Chemical Society, Potsdam, NY, 1990; American Chemical Society: Washington, DC, 1990; p 175. (21) Power, M. B.; Apblett, A. W.; Bott, S. G.; Atwood, J. L.; Barron. Table III. Selected Bond Lengths (Å) and Angles (deg) in AlMe(BHT)₂[O=C(OMe)Ph] (17) | _ | | | - 1 - 1 - 1 - 1 | | |---|--------------------|------------|--------------------|--------------| | | Al-O(1) | 1.714 (9) | Al-O(2) | 1.721 (8) | | | Al-O(3) | 1.851 (7) | Al-Me | 1.96(2) | | | O(1)-C(1) | 1.35(2) | O(2)-C(11) | 1.35(2) | | | O(3)-C(101) | 1.24(1) | C(101)-O(4) | 1.31(2) | | | O(4)-C(108) | 1.47 (2) | C(101)-C(102) | 1.44(2) | | | O(1)-Al-O(2) | 116.0 (5) | O(1)-Al-O(3) | 105.7 (4) | | | O(1)-Al-Me | 109.4 (5) | O(2)-Al- $O(3)$ | 100.4 (4) | | | O(2)-Al-Me | 119.4 (5) | O(3)-Al-Me | 103.7 (5) | | | Al-O(1)-C(1) | 153.3 (8) | Al-O(2)-C(11) | 156.3 (6) | | | Al-O(3)-C(101) | 174 (1) | O(3)-C(101)-O(4) | 123 (1) | | | O(3)-C(101)-C(103) | 2) 124 (1) | C(101)-O(4)-C(108) | 3) 118.0 (9) | | | | | | | definitely stable as solids or in solution under an inert atmosphere. The molecular structure of 17 has been confirmed by X-ray crystallography and is shown in Figure 3, with selected bond lengths and angles given in Table III. The geometry around aluminum in 17 is essentially the same as observed for 1 and AlMe(BHT)₂(O=CPh₂), ¹⁰ while the aryloxide Al-O distances [Al-O(1) = 1.726 (3) Å, Al-O(2) = 1.729 (3) Å] are within the range for some degree of Al-O π interaction. ^{6,7} The ester Al-O bond distance [1.857 (7) Å] is significantly shorter than those we have observed for the aldehyde and ketone analogues (see above and ref 10) but is within the expected range for a normal Al-O σ bond (1.8-2.0 Å). ¹² Amides. The interaction of AlMe(BHT)₂ with O=C-(NH₂)Me, O=C(NPh₂)Me, and O=C(NMe₂)Ph, in pentane, yields the corresponding Lewis acid-base complexes AlMe(BHT)₂[O=C(NH₂)Me] (21), AlMe(BHT)₂[O=C-(NPh₂)Me] (22), and AlMe(BHT)₂[O=C(NMe₂)Ph] (23), which have been characterized by ¹H, ¹³C, and ²⁷Al NMR and IR spectroscopy. Organic amides have lone pairs at both nitrogen and oxygen atoms and have the potential to act as ambidentate ligands, bonding through oxygen (II), nitrogen (III), or both nitrogen and oxygen (IV). The 27 Al NMR spectra of 21–23 are consistent with four-coordinate aluminum centers (66–71 ppm), 7,22 which would preclude the bidentate coordination (IV) of the amide to aluminum. As has been observed for the aldehyde, ketone, and ester complexes, a decrease in the carbonyl stretching frequency and a downfield shift in the 13 C NMR resonances of the carbonyl α -carbon in 21–23 (as compared to those of the free amide) indicates that the amide is bound via the carbonyl oxygen (II). In addition, the presence of dissimilar magnetic environments for the two substituents on nitrogen suggests that the $-NR_2$ moiety is rigid and coplanar with the coordinated carbonyl group. We have been unable, however, to confirm this proposal by X-ray crystallography. We have shown that the elimination-condensation reaction sequence (eq 4) that commonly occurs between aluminum alkyls and primary or secondary amines does not occur with aluminum-BHT compounds.²³ In contrast, $$AlR_3 + HNR'_2 \rightarrow [AlR_2(NR'_2)]_r + RH \tag{4}$$ $$AlMe(BHT)_2 + O = C(NHMe)Ph \xrightarrow{25 \text{ °C}}$$ $$Al(BHT)_2[O = C(NMe)Ph] + MeH (5)$$ 24 $$AlMe(BHT)_{2}[O=C(NH_{2})Me] \xrightarrow{>80 \text{ °C}}$$ $$Al(BHT)_{2}[O=C(NH)Me] + MeH (6)$$ 25 24: R = Ph, R' = Me25: R = Me, R' = H the reaction of AlMe(BHT)₂ with O=C(NHMe)Ph, in pentane, at ambient temperatures results in the elimination of methane and the formation of the amidate complex Al(BHT)₂[O=C(NMe)Ph] (24; eq 5). Methane elimination from the acetamide complex (21) occurs in toluene solution at elevated temperatures (eq 6) to give Al-(BHT)₂[O=C(NH)Me] (25). The fact that the ²⁷Al NMR chemical shifts for 24 and 25 are consistent with a distorted four-coordinate aluminum and both are monomeric, as determined by solution molecular weight in benzene, suggests that the amidates act as bidentate chelating ligands, in contrast to the bidentate bridging mode previously reported for {Me₂Al[OC(Ph)NEt]}₂.²⁴ We have proposed that the observed lack of reactivity between the Al-C bonds in AlMe(BHT)₂ and primary and secondary amines is due to the reduced basicity of the aluminum methyl group arising from the presence of the electron-donating aryloxide substituents.²³ The difference in reactivity between AlMe(BHT)₂ and amides and amines may be ascribed to the increased acidity of amide protons (p $K_a = 15-17$) as compared to those in primary or secondary amines (p $K_a = 27-30$).²⁵ The small difference in acidity between O=C(Me)NH₂ (p $K_a = 17$) and O=C-(Ph)NHMe (p $K_a = 16$) is perhaps insufficient to explain that greater temperatures are required for alkane elimination from compound 21. Given that the elimination reactions for amides undoubtedly proceed via a six-membered cyclic transition state (V; similar to that proposed for the enolization of coordinated ketones by aluminum alkyls²¹), the difference in steric bulk between the phenyl substituent and the methyl
group is sufficient to favor a ⁽²³⁾ Healy, M. D.; Ziller, J. W.; Barron, A. R. Organometallics, in press. ⁽²⁴⁾ Kai, Y.; Yasuoka, N.; Kasai, N.; Kakudo, M. J. Organomet. Chem. 1971, 32, 165. ^{(25) (}a) Perrin, D. D. Dissociation Constants of Organic Bases in Aqueous Solution; Butterworths: London, 1965. (b) Perrin, D. D.; Dempsey, D.; Serjeant, E. P. pKa Prediction for Organic Acids and Bases; Chapman and Hall: New York, 1981. conformation in which the aluminum and nitrogen are cis with respect to the carbonyl C=O bond. Such a conformation would be required for the elimination of alkane. We propose, therefore, that a consideration of the increased steric bulk of phenyl versus that of methyl is sufficient to explain the enhanced tendency of O=C-(Ph)N(H)Me to eliminate the aluminum methyl group. p-Nitrotoluene. Organic nitro compounds are notoriously weak bases, ²⁶ coordination by an NO₂ group occurring only when the ligand is anionic. ²⁷ It is surprising, therefore, that the addition of p-nitrotoluene to a pentane solution of AlMe(BHT)₂ results in the formation of the deep blue Lewis acid-base adduct AlMe(BHT)₂-(O₂NC₆H₄-p-Me) (26). A recent X-ray crystallographic study of the first examples of complexes containing coordinated nitrobenzene, $[Zn(O_2NC_6H_5)_2(OTeF_3)_2]_2$ and $Zn(O_2NC_6H_5)_3(OTeF_5)_2$, has shown that organo nitro groups can function as either bidentate or monodentate ligands. The IR spectrum of 26 exhibits $\nu(NO)$ bands (1517, 1510, 1340 and 1300 cm⁻¹) that are shifted with respect to those of free p-nitrotoluene $[\nu(NO)_{asym}$ 1596 cm⁻¹ and $\nu(NO)_{sym}$ 1366 cm⁻¹]. The bands in the spectra of 26 are similar to those reported for $Zn(O_2NC_6H_5)_3(OTeF_5)_2$, in which the nitrobenzene groups are monodentate. In addition, the ^{27}Al NMR shift (70 ppm) is consistent with a four-coordinate aluminum center, confirming that the nitro group is bound through only one of the oxygen lone pairs. During the course of the $AlMe_2(BHT)$ -promoted conversion of $O=C(H)C_6H_4$ -p- NO_2 to $O=C(Me)C_6H_4$ -p- NO_2 , the reaction solution changes from an initial deep blue to the dark brown of the ketone complex. In light of the above, we propose that $O=C(H)C_6H_4$ -p- NO_2 initially coordinates via a nitro oxygen to give the observed deep blue complex. This subsequently rearranges to, or is in equilibrium with, the aldehyde-bound complex (eq 7). The latter is rapidly converted to the ketone complex via the reaction discussed above. Bis[cyclopentadienyldicarbonyliron]. The reaction of AlMe(BHT)₂ with [CpFe(CO)₂]₂ gives the red benzeneand toluene-soluble 1:1 adduct [CpFe(CO)₂]₂AlMe(BHT)₂ (27). Adduct formation is accompanied by a ca. 170-cm⁻¹ decrease in the asymmetric stretching frequency of one of the bridging carbonyls. We have been unable to confirm the structure of 27 by X-ray crystallography, but from ¹H NMR and IR spectroscopy it appears to be analogous to the Lewis acid-base adducts of [CpFe(CO)₂]₂ reported by Shriver et al.²⁹ Compound 27 is stable in the solid state or in hexane or benzene solution but rapidly decomposes in coordinating solvent, e.g., Et₂O, to the solvent complex, e.g., AlMe(BHT)₂(OEt₂). In order to investigate the formation of a possible bis complex between AlMe(BHT)₂ and [CpFe(CO)₂]₂, the reaction has been monitored with use of variable-temperature ¹H NMR spectroscopy. There is only a single aluminum methyl resonance observed, even as low as -80 °C, for a solution with an AlMe(BHT)₂:[CpFe(CO)₂]₂ molar ratio of 2:1, consistent with the formation of [CpFe(CO)₂]₂·2[AlMe(BHT)₂] (28). At AlMe(BHT)₂:[CpFe(CO)₂]₂ molar ratios greater than 2, there is only a single aluminum methyl resonance observed at room temperature, suggesting that free and coordinated AlMe(BHT)₂ are in rapid exchange (eq 8). $$\begin{aligned} [\text{CpFe(CO)}_2]_2 \cdot 2[\text{AlMe(BHT)}_2] &+ \text{Al*Me(BHT)}_2 \rightarrow \\ [\text{CpFe(CO)}_2]_2[\text{AlMe(BHT)}_2][\text{Al*Me(BHT)}_2] &+ \\ &+ \text{AlMe(BHT)}_2 \end{aligned} (8)$$ Cooling such a solution to -80 °C results in the observation of signals due to AlMe(BHT)₂ and a species consistent with 28. We propose that solutions of AlMe(BHT)₂ and [CpFe(CO)₂]₂ are best described by equilibria between the 2:1 and 1:1 complexes and the free species (eq 9). $$[CpFe(CO)_{2}]_{2} \xrightarrow{AlMe(BHT)_{2}} [CpFe(CO)_{2}]_{2} \cdot AlMe(BHT)_{2}$$ $$\xrightarrow{AlMe(BHT)_{2}} [CpFe(CO)_{2}]_{2} \cdot 2[AlMe(BHT)_{2}] (9)$$ Mode of Coordination of Organic Carbonyls to Aluminum Compounds. There are several different possible modes of coordination of aluminum Lewis acids to carbonyl groups. One possibility is a purely electrostatic interaction, in which the aluminum is situated at the negative end of the C=O dipole, where C-O-Al = 180° (VI). Another possibility is the coordination of the alu- ⁽²⁶⁾ Gutmann, V. Coord. Chem. Rev. 1976, 18, 225. (27) See for example: Diel, B. N.; Hope, H. Inorg. Chem. 1986, 25, ⁽²⁸⁾ Hurlburt, P. K.; Kellett, P. J.; Anderson, O. P.; Strauss, S. H. J. Chem. Soc., Chem. Commun. 1990, 576. ⁽²⁹⁾ Nelson, N. J.; Kime, N. E.; Shriver, D. F. J. Am. Chem. Soc. 1969, Figure 4. Partial coordination spheres of the organic carbonyl ligands for 1 (a), 8 (b), AlMe(BHT)₂(O=CPh₂) (c), AlCl₃[O=C(Me)OPh] (d), AlEt₂(BHT)[O=C(OMe)C₆H₄-p-Me] (e), and 17 (f), viewed perpendicular and parallel to the C=O vector. minum to one of the lone pairs on the carbonyl oxygen. This results in the aluminum being in the nodal plane of the C=O π bond (VII). Ab initio calculations for the model system $H_3Al(O=CH_2)^{30}$ suggest that this bent mode is the energetically favored geometry. A bent-non-planar mode of bonding (VIII) results from movement of the aluminum out of the carbonyl π nodal plane.³¹ Finally a η^2 coordination of a Lewis acid to the C=O π bond can be envisaged (IX) in which the carbonyl π orbital is the donor but back-bonding into the C=O π^* orbital occurs.³² Although this mode has been reported for transition metals, it does not seem likely for main-group Lewis acids. Figure 4 shows the partial coordination spheres of the organic carbonyl ligands, for a representative selection of monomeric aluminum complexes, viewed perpendicular and parallel to the C=O vector. The structures of the aldehyde and ketone¹⁰ complexes (Figure 4a-c) are con- sistent with theoretical calculations;³⁰ i.e., the carbonyl is coordinated such that the aluminum is in the π nodal plane of the ketone. The Al-O-C angles range from 136.0 (3) to 153.8 (9)°, larger than the predicted range of 122–141°. Wiberg³⁰ has shown, however, that any steric effects at the α -carbon can be relieved by opening the Al-O-C angle, at a small energetic cost. Thus, one would expect the Al-O-C angle in 1 to be less than that for AlMe(BHT)₂(O=CPh₂),¹⁰ and this is indeed observed [136.0 (3) and 144.0 (6)°, respectively]. Although the syn conformation is predicted to be the most stable,³⁰ both 1 and 8 adopt anti conformations, presumably due to steric interactions. The ester complexes $AlCl_3[O=C(Me)OPh]^{33}$ and 17 have Al-O-C angles approaching linearity, 168.4 (3) and 174 (1)°, respectively, while $AlEt_2(BHT)[O=C-(OMe)C_6H_4-p-Me]^{11}$ appears to be a rare example of a bent-nonplanar mode of bonding [Al-O(2)-C(30)=143.0 (6)°, Al-O(2)-C(30)-O(3)=130.1°]. Despite the proposal by Ashby et al. ¹⁵⁻¹⁸ that this mode of coordination is im- ⁽³⁰⁾ LePage, T. J.; Wiberg, K. B. J. Am. Chem. Soc. 1988, 110, 6642. (31) Poll, T.; Melter, J. O.; Helmchen, G. Angew. Chem., Int. Ed. Engl. 1985, 24, 112 ^{1985, 24, 112.} (32) Haymon, W. D.; Faivlie, D. P.; Taube, H. J. Am. Chem. Soc. 1986, 108, 202 ⁽³³⁾ Sobota, P.; Mustafa, M. O.; Urko, J.; Lis, T. J. Organomet. Chem. 1989, 368, 257. **Figure 5.** Decrease in the IR carbonyl stretching frequency $(\Delta \nu)$ as a function of the downfield shift in the ¹³C NMR resonances of the carbonyl α -carbon $(\Delta \delta)$ for 1–3, 7–15, and 17–23. portant in the transition states for both the reduction (X) and the alkylation (XI) of organic carbonyls by aluminum alkyl species, no other examples have been structurally characterized for aluminum complexes. It is apparent that the mode of coordination of organic carbonyls to aluminum is quite flexible. We propose that the control over the mode of bonding is predominantly steric. This is quite reasonable, given the small barrier calculated for the distortion from bent to linear geometry for $AlH_3(O=CH_2)$ (6 kcal/mol at $MP3/6-31G^*$). Effects on the Organic Carbonyl Ligand. The IR C-O stretching frequency is strongly influenced by the C-O bond order; the higher the frequency, the greater the bond order. As we have previously observed, 10 there is a decrease in the carbonyl stretching frequency in the IR spectrum of the aluminum complexes when compared to those of the free carbonyls. Although this shift in frequency is consistent with coordination of the carbonyl to aluminum, the magnitude of $\Delta \nu$ appears to be characteristic of the class of carbonyl ligand: aldehydes, 55-70 cm⁻¹; ketones, $45-70 \text{ cm}^{-1}$; esters, $85-125 \text{ cm}^{-1}$; amides, $80-125 \text{ cm}^{-1}$ cm⁻¹. This result can be rationalized as for the shifts observed for Lewis acid complexes of transition-metal carbonyl²⁹ and acetyl³⁴ complexes. If there is the possibility of electron donation from substituents X at the carbonyl α -carbon (XII), then resonance form XIII becomes a significant contributor for the carbonyl adducts. The shift in the C-O stretching frequency is large not only for esters and amides but also for aldehydes and ketones with strong electron-donating substituents. Thus, the p-methoxybenzaldehyde complex 6 has a larger $\Delta \nu$ value (100 cm⁻¹) than that observed for the other aldehydes. If this bonding picture is correct, then the magnitude of the downfield shifts in the ¹³C NMR spectra for the carbonyl α -carbon, on coordination to aluminum (
$\Delta \delta$) Figure 6. Aluminum methyl 13 C NMR shift (δ) as a function of the organic carbonyl ligands' steric bulk (see text) for the complexes AlMe(BHT)₂[O—C(X)Y] (a) and AlMe₂(BHT)[O—C(X)Y] (b). should decrease with an increase in the contribution of resonance form XIII; i.e., $\Delta \delta$ will decrease with an increase in $\Delta \nu$. Although a general trend is indeed observed for the changes in the ¹³C NMR shift and the carbonyl ν (C=O) stretching frequency (Figure 5), it is clear that other, possibly steric, factors are also important in determining the magnitude of either parameter. Effects on Aluminum. We have shown previously³⁵ that the ¹³C NMR shift of the aluminum carbon resonance in Me₃AlPR₃ complexes is primarily dependent on the steric bulk of the phosphine ligand; the bulkier phosphines force the aluminum to become more distorted from planarity, and the increased p character in the Al-C bond is reflected by the downfield shift of the Al-CH₃ carbon resonance. As shown in Figure 6, there is a similar dependence of the aluminum methyl ¹³C shift on the steric bulk of the organic carbonyl for the complexes AlMe₂-(BHT)[O=C(X)Y] (Figure 6a) and $AlMe(BHT)_2[O=C-C-C]$ (X)Y] (Figure 6b); that is, the greater the steric bulk of the α -carbon's substituents, the more downfield the shift of the methyl resonance. For simplicity we have defined the steric bulk of the organic carbonyls to be proportional to the sum of their substituent cone angles as reported by Tolman (eq 10). $$\theta_{O=C(X)Y} \propto \theta_X + \theta_Y$$ (10) The aldehyde complexes are notable exceptions to the trends found for the ¹³C NMR shifts for the Al-CH₃ groups in both AlMe₂(BHT)[O=C(X)Y] and AlMe(BHT)₂[O=C(X)Y], and therefore, they are not included in the straight lines drawn in Figure 6. From the ¹³C NMR shift, it would appear that the aldehydes are sterically less hindered than their calculated values would suggest. Indeed, from Figure 6, an effective cone angle between 140 and 150° can be estimated for all the aldehydes. On the basis of our me- thod of estimating the steric bulk of organic carbonyls, this value would correspond to that expected for $O=CH_2$, suggesting that the aldehyde complexes in solution retain the conformation observed in the solid state (see above), in which the α -hydrogen is syn with respect to the aluminum. This observation may be significant in the stereospecific reactions of aldehydes coordinated to sterically hindered aluminum Lewis acids. ### Experimental Section Microanalyses were performed by Oneida Research Services, Inc., Whitesboro, NY. Melting points were determined in sealed capillaries and are uncorrected. IR spectra (4000-700 cm⁻¹) were recorded on a Nicolet 5ZDX FT-IR spectrometer as Nujol mulls (NaCl). NMR spectra, in C₆D₆ unless otherwise stated, were recorded on Bruker AM-500 (1H and 13C) and WM-300 spectrometers (27Al) [δ in parts per million relative to SiMe₄ (1H, 13C) and Al(H₂O)₆²⁺ (27Al)]. Molecular weight measurements were made in benzene with the use of an instrument similar to that described by Clark.³⁶ All manipulations were carried out under nitrogen. Solvents (pentane, unless otherwise indicated) were dried, distilled, and degassed before use. AlMe(BHT)₂⁶ and AlMe₂(BHT)(OEt₂)⁸ were prepared as described previously. AlMe(BHT)₂[O=C(H) t Bu] (1). O=C(H) t Bu (0.426 mL, 6.24 mmol) in pentane (20 mL) was added dropwise to AlMe(BHT)₂ (3.0 g, 6.24 mmol) in pentane (30 mL). A bright yellow solution resulted. When the mixture was stirred for 2 h, the solvent was removed under vacuum to leave a bright yellow-orange powder. The yield of crude product was essentially quantitative. The powder was washed with pentane (20 mL), the washings were filtered, and the filtrate was reduced in volume and set aside in the freezer. Large orange crystals suitable for X-ray diffraction formed overnight: yield ca. 85%; mp 129-130 °C. Anal. Calcd for C₃₆H₅₉AlO₃: C, 76.28; H, 10.49. Found: C, 76.05; H, 10.10. IR: 1655 (s), 1290 (sh), 1258 (s), 1235 (s), 1215 (m), 1200 (s), 1120 (m) 1040 (w), 1030 (w), 950 (w), 920 (w), 890 (m), 870 (s), 860 (s), 810 (w), 770 (m), 710 (s), 670 (sh), 658 (s) cm⁻¹. ¹H NMR: δ 8.85 [1 H, s, $O=C(H)^{t}Bu$], 7.18 (4 H, s, $C_{6}H_{2}$, BHT), 2.28 (6 H, s, CH_{3} , BHT), 1.59 [36 H, s, $C(CH_3)_3$, BHT], 0.537 [9 H, s, $O=C(H)C-(CH_3)_3$], -0.14 (3 H, s, $Al-CH_3$). ¹³C NMR: δ 223.78 (C=O) 154.65 (OC, BHT), 138.99 (o-C, BHT), 126.43 (m-C, BHT), 126.18 (p-C, BHT), 43.79 [$C(CH_3)_3$, O= $C(H)^tBu$], 35.57 [$C(CH_3)_3$, BHT], 31.96 $[C(CH_3)_3, BHT], 22.47 [C(CH_3)_3, O=C(H)^tBu], 21.33 (CH_3, BHT),$ $-5.80 \text{ (Al-}CH_3)$ $AlMe(BHT)_2[O=C(H)C_6H_4-p-Me]$ (2). $O=C(H)C_6H_4-p-Me$ (0.764 mL, 6.24 mmol) in pentane (30 mL) was added dropwise to AlMe(BHT)₂ (3.0 g, 6.24 mmol) in the same volume of pentane. A deep red solution resulted. As the addition proceeded, an orange precipitate formed. Upon completion of the addition, the resulting mixture was stirred for 1 h and then filtered. The precipitate was washed once with pentane, filtered, and dried under vacuum: yield ca. 73%; mp 138 °C. Anal. Calcd for $C_{39}H_{57}AlO_3$: C, 77.95; H, 9.56. Found: C, 78.14; H, 9.89. IR: 1630 (s), 1620 (s), 1595 (s), 1560 (s), 1335 (w), 1295 (sh), 1280 (s), 1260 (s), 1240 (sh), 1200 (m), 1170 (m), 1125 (m), 1025 (w), 1010 (w), 950 (w), 925 (w), 895 (s), 880 (s), 855 (s), 810 (m), 775 (m), 770 (m), 725 (w), 680 (s), 665 (s), 650 (s), 620 (m), 575 (w), 485 (m), 470 (w) cm⁻¹. ¹H NMR: δ 8.88 (1 H, s, O=CH), 7.35 (2 H, m, o-CH), 7.20 (4 H, s, C₆H₂, BHT), 6.58 [2 H, d, J(H-H) = 7.9 Hz, m-CH], 2.30 (6 H, s, CH_3), BHT), 1.78 (3 H, s, CH_3), 1.67 [36 H, s, $C(CH_3)_3$, BHT], 0.07 (3 H, s, Al-CH₃). ¹³C NMR: δ 200.38 (O=C), 154.98 (OC, BHT), 153.17 (O=CC), 139.06 (o-C, BHT), 134.36 (o- and m-C), 130.57 (p-C), 126.39 (m-C, BHT), 125.79 (p-C, BHT), 35.46 $[C(CH_3)_3, BHT]$, 31.91 $[C(CH_3)_3, BHT]$, 22.12 (CH_3) , 21.40 (CH_3, BHT) , -6.04 (Al-CH₃). AlMe(BHT)₂[O=C(H)C₆H₄-p-Cl] (3) was prepared in a manner analogous to that for 2: yield 92%; mp 120 °C. Anal. Calcd for C₃₈H₅₄AlClO₃: C, 73.46; H, 8.76. Found: C. 73.28; H, 8.52. IR: 1630 (s), 1595 (s), 1565 (m), 1315 (sh), 1295 (sh), 1280 (s), 1260 (s), 1240 (sh), 1225 (sh), 1205 (m), 1170 (w), 1160 (w), 1125 (w), 1090 (m), 1030 (w), 1010 (w), 955 (w), 900 (m), 885 (m), 860 (m), 850 (m), 835 (m), 815 (m), 775 (w), 715 (w), 680 (m), 660 (m), 650 (m), 590 (m), 490 (m) cm⁻¹. 1 H NMR: δ 8.69 (1 H, s, O=CH), 7.19 (4 H, s, C_6H_2 , BHT), 7.05 [2 H, d, J(H-H) = 8.72Hz, o-CH], 6.65 [2 H, d, J(H-H) = 8.73 Hz, m-CH], 2.28 (6 H, s, CH_3 , BHT), 1.65 [36 H, s, $C(CH_3)_3$, BHT], 0.038 (3H, s, Al– CH_3). ¹³C NMR: δ 199.97 (O=C), 154.74 (OC, BHT), 147.20 (O=CC), 139.05 (o-C, BHT), 134.92 (p-C), 130.89 (o-C), 130.12 (m-C), 126.45 (m-C, BHT), 126.14 (p-C, BHT), 35.43 [C(CH₃)₃, BHT], 31.89 $[C(CH_3)_3, BHT], 21.36 (CH_3, BHT), -6.22 (Al-CH_3).$ $AlMe_2(BHT)[O=C(H)C_6H_4-p-Me]$ (4). $O=C(H)C_6H_4-p-Me$ (1.74 mL, 14.25 mmol) was added via syringe to a solution of $AlMe_2(BHT)(Et_2O)$ (5.0 g, 14.25 mmol) in pentane (40 mL). A large quantity of an orange-yellow precipitate resulted. The mixture was stirred for ca. 5 min and then filtered. The precipitate was dried under vacuum: yield ca. 80%; mp 82-86 °C. Anal. Calcd for C₂₅H₃₇O₂Al: C, 75.72; H, 9.40. Found: C, 75.55; H, 9.18. IR: 1640 (m), 1600 (s), 1570 (m), 1280 (s), 1260 (sh), 1240 (sh), 1220 (sh), 1190 (m), 1175 (m), 1130 (w), 1015 (w), 875 (s), 860 (sh), 810 (m), 780 (w), 770 (w), 710 (sh), 675 (s), 650 (sh), 625 (m) cm⁻¹. ¹H NMR: δ 9.02 (1 H, s, O=CH), 7.49 [2 H, d, J(H-H) = 8.17 Hz, o-CH], 7.30 (2 H, s, C_6H_2 , BHT), 6.52 [2 H, d, J(H-H) = 8.1 Hz, m-CH], 2.39 (3 H, s, CH₃, BHT), 1.81 (3 H, s, CH₃), 1.68 [18 H, s, $C(CH_3)_3$, BHT], -0.035 (6 H, s, Al-C H_3). $AlMe_2(BHT)[O=C(H)C_6H_4-p-Cl]$ (5) was prepared in a manner analogous to that for 4: yield ca. 86%; mp 85-87 °C. Anal. Calcd for C₂₄H₃₄AlClO₂: C, 69.13; H, 8.21. Found: C, 69.15; H, 8.37. IR: 1630 (s), 1585 (s), 1560 (m), 1285 (s), 1265 (sh), 1220 (m), 1190 (m), 1170 (w), 1085 (m), 1010 (w), 870 (m), 850 (m), 820 (m), 780 (w), 710 (m), 670 (s), 590 (m) cm⁻¹. ¹H NMR: δ 8.88 $(1 \text{ H, s, OC}H), 7.28 (2 \text{ H, s, C}_6H_2, BHT), 6.91 [2 \text{ H, d, } J(H-H)]$ = 7.7 Hz, C_6H_2], 6.67 [2 H, d, J(H-H) = 7.7 Hz, C_6H_2], 2.38 (3 H, s, CH_3 , BHT), 1.64 [18 H, s, $C(CH_3)_3$, BHT], -0.09 (6 H, s, $Al-CH_3$ $AlMe_2(BHT)[O=C(H)C_6H_4-p-OMe]$ (6) was prepared in a manner analogous to that for 4: yield ca. 92%; mp 95-97 °C. Anal. Calcd. for C₂₅H₃₇AlO₃: C, 72.28; H, 9.03. Found: C, 72.79; H, 9.26. IR: 1625 (m), 1590 (s), 1550 (m), 1300 (sh), 1275 (s), 1220 (sh), 1200 (w), 1180 (w), 1155 (m), 1120 (w), 1020 (m), 860 (s), 840 (s), 810 (w), 780 (w), 770 (w), 700 (sh), 670 (s), 660 (s), 620 (m), 590 (sh), 545 (w), 520 (w) cm⁻¹. ¹H NMR: δ 8.99 (1 H, s, O=CH), 7.27 (2 H, s, C_6H_2 , BHT), 6.31 [2 H, d, J(H-H) = 8.82Hz, C_0H_2], 3.02 (3 H, s, OCH_3), 2.37 (3 H, s, CH_3 , BHT), 1.69 [18 H, s, $C(CH_3)_3$, BHT], -0.049 (6 H, s, Al- CH_3). ¹³C NMR: 196.82 (O=C), 169.15 (COMe), 155.79 (OC, BHT), 138.69 (o-C, BHT), 126.17 (OCC), 126.06 (m-C, BHT), 125.00 (p-C, BHT), 115.40 (o-C), 55.54 (OCH₃), 35.24 [C(CH₃)₃, BHT], 31.29 [C(CH₃)₃, BHT], 21.57 (CH₃, BHT), -6.88 (Al-CH₃). $AlMe(BHT)_2[O=C(CH_2)_3CH_2]$ (7). $O=C(CH_2)_3CH_2$ (0.9) mL, 11.25 mmol) was added via syringe to a pentane (40 mL) solution of AlMe(BHT)₂ (5.25 g, 10.92 mmol). A pale yellow precipitate formed. After it was stirred for 15 min, the solution was filtered and the precipitate was dried under vacuum: yield 70-80%; mp 152-153 °C. Anal. Calcd for C₃₆H₅₇AlO₃: C, 76.55; H, 10.17. Found: C, 76.59; H, 10.20. IR: 1690 (sh), 1685 (s), 1660 (sh), 1598 (w), 1295 (s), 1285 (s), 1270 (s), 1250 (sh), 1235 (s), 1200 (sh), 1190 (m), 1155 (w), 1020 (w), 950 (w), 890 (s),
860 (m), 850 (m), 775 (w), 720 (m), 685 (sh), 665 (sh), 620 (w), 580 (m) cm⁻¹. ¹H NMR: δ 7.20 (4 H, s, C₆H₂, BHT), 2.29 (6 H, s, CH₃, BHT), 1.82 [4 H, m, OCC H_2], 1.59 [36 H, s, C(C H_3)₃, BHT], 1.02 [4 H, m, OCC H_2 C H_2], -0.127 (3 H, s, Al-C H_3). ¹³C NMR: δ 241.56 (C=O), 154.65 (OC, BHT), 138.86 (o-C, BHT), 126.33 (m-C, BHT), 125.75 (p-C, BHT), 40.73 (OCC H_2), 35.37 [C(C H_3)₃, BHT], 31.92 [C(CH₃)₃, BHT], 22.49 (OCCH₂CH₂), 21.39 (CH₃, BHT), -5.13 (Al-CH₃). $AlMe_2(BHT)(O=CPh_2)$ (8). Method 1. O=CPh₂ (1.82 g, 10.0 mmol) in pentane (40 mL) was added dropwise to an equimolar solution of AlMe₃ (5.0 mL, 2.0 M, 10.0 mmol) and BHT-H (2.2 g, 10.0 mmol) in pentane (20 mL). As the addition proceeded, an orange-red color developed. After the mixture was stirred for 1 h, the solvent was removed under vacuum to yield an orange-red residue. This was dissolved in pentane (10 mL) and the solution cooled to -20 °C. An orange oil formed, which crystallized after ca. 3 days. The crystalline material was filtered, and ¹H NMR spectroscopy showed it to consist of a 2:1 ratio of 8 and AlMe(BHT)₂(O=CPh₂). Multiple fractional crystallization of this mixture gave pure 8, yield ~40%. Compounds 9-15 were prepared in a manner analogous to that for 8 (method 2). $AlMe_2(BHT)[O=C(Et)Ph]$ (9): yield 80-90%; mp 93-94 °C. Anal. Calcd. for C₂₆H₃₉AlO₂: C, 76.06: H, 9.57. Found: C, 76.30; H, 9.24. IR: 1635 (s), 1595 (s), 1580 (s), 1310 (w), 1250 (s), 1215 (w), 1190 (m), 1125 (s), 1105 (w), 1085 (m), 1075 (sh), 1025 (m), 1000 (m), 950 (m), 935 (w), 920 (w), 885 (m), 865 (s), 835 (w), 805 (w), 775 (m), 745 (s), 700 (s, br), 610 (m), 575 (m), 565 (m), 540 (m), 495 (m) cm⁻¹. ¹H NMR: δ 7.64 [2 H, d, J(H-H) = 7.8 Hz, o-CH], 7.23 (2 H, s, C_6H_2 , BHT), 7.06 [1 H, t, J(H-H) = 7.7 Hz, p-CH], 6.87 [2 H, t, J(H-H) = 7.8 Hz, m-CH], 2.59 [2 H, q, J(H-H)= 7.5 Hz, CH_2CH_3], 2.34 (3 H, s, CH_3 , BHT), 1.60 [18 H, s, $C(CH_3)_3$, BHT], 0.882 [3 H, t, J(H-H) = 7.5 Hz, CH_2CH_3], -0.119 (6 H, s, Al-CH₃). 13 C NMR: δ 214.16 (C=O), 155.74 (OC, BHT), 138.79 (o-C, BHT), 137.38 (CC=O, Ph), 133.24 (p-C, Ph), 131.43 (o-C, Ph), 129.26 (m-C, Ph), 126.07 (m-C, BHT), 125.08 (p-C, BHT), 35.13 [C(CH₃)₃, BHT], 32.55 (CH₂CH₃), 31.34 [C(CH₃)₃, BHT], 21.55 (CH₃, BHT), 11.27 (CH₂CH₃), -5.28 (Al-CH₃). AlMe₂(BHT)[O=C(Me)Ph] (10): yield 80~85%; mp 106–107 °C. Anal. Calcd for C₂₅H₃₇O₂Al: C, 75.72; H, 9.40. Found: C, 74.83; H, 9.06. IR: 1622 (s), 1600 (m), 1572 (s), 1275 (s), 1220 (w), 1185 (m), 1120 (w), 1100 (w), 1070 (w), 1020 (w), 1000 (w), 965 (w), 930 (w), 865 (s), 805 (w), 760 (w), 745 (w), 710 (m), 670 (s), 600 (m), 580 (m) cm⁻¹. H NMR: δ 7.50 [2 H, d, J(H-H) = 7.6 Hz, ρ -CH], 7.29 (2 H, s, C₆H₂, BHT), 6.98 [1 H, t, J(H-H) = 7.6 Hz, ρ -CH], 6.76 [2 H, t, J(H-H) = 7.6 Hz, ρ -CH], 2.38 (3 H, s, CH₃, BHT), 2.12 (3 H, s, CH₃), 1.65 [18 H, s, C(CH₃)₃, BHT], -0.05 (6 H, s, Al-CH₃). ¹³C NMR: δ 210.71 (O=C), 155.75 (OC, BHT), 138.77 (ρ -C, BHT), 137.42 (O=CC), 134.29 (ρ -C), 131.12 (ρ -C), 129.10 (ρ -C), 126.09 (ρ -C, BHT), 125.15 (ρ -C, BHT), 35.11 [ρ -C(CH₃)₃, BHT], 31.30 [ρ -C(CH₃)₃, BHT], 26.00 (ρ -CH₃), 21.53 (ρ -CH₃). AlMe₂(BHT)[O=C(Me)C₆H₄·p·Me] (11): yield ~83%; mp 124 °C. Anal. Calcd for C₂₆H₃₉O₂Al: C, 76.06; H, 9.57. Found: C, 75.91; H, 9.20. IR: 1620 (m), 1595 (s), 1565 (s), 1320 (m), 1305 (m), 1290 (sh), 1280 (s), 1260 (sh), 1250 (sh), 1220 (w), 1220 (w), 1200 (w), 1183 (s), 1130 (w), 1020 (w), 1012 (w), 1000 (w), 965 (m), 950 (sh), 920 (w), 865 (s), 835 (w), 805 (m), 780 (m), 715 (m), 675 (s), 600 (m), 585 (sh) cm⁻¹. ¹H NMR: δ 7.54 [2 H, d, J(H-H) = 8.2 Hz, o-CH], 7.27 (2 H, s, C_6H_2 , BHT), 6.67 [2 H, d, J(H-H) = 8.2 Hz, m-CH], 2.36 (3 H, s, CH₃, BHT), 2.21 (3 H, s, O=CCH₃), 1.87 (3 H, s, CH₃), 1.65 [18 H, s, C(CH₃)₃, BHT], -0.08 (6 H, s, A]-CH₃). ¹³C NMR: δ 209.59 (C=O), 155.83 (OC, BHT), 149.71 (CC=O), 138.79 (o-C, BHT), 132.01 (p-C), 131.48 (o-C), 129.93 (m-C), 126.09 (m-C, BHT), 125.08 (p-C, BHT), 35.13 [C(CH₃)₃, BHT], 31.32 [C(CH₃)₃, BHT], 25.76 (O=CCH₃), 21.71 (CH₃, BHT], 31.54 (CH₃), -5.49 (CH₃). AlMe₂(BHT)[O=C(Me)C₆H₄-p-Cl] (12): yield 83%; mp 123 °C. Anal. Calcd for C₂₅H₃₆O₂AlCl: C, 69.67; H, 8.41. Found: C, 69.61; H, 8.25. IR: 1630 (s), 1590 (s), 1565 (s), 1315 (m), 1300 (s), 1290 (sh), 1275 (s), 1255 (s), 1245 (sh), 1215 (w), 1190 (s), 1180 (m), 1125 (w), 1095 (m), 1080 (w), 1020 (w), 1010 (m), 975 (m), 950 (w), 920 (w), 885 (sh), 870 (sh), 865 (s), 835 (m), 827 (w), 805 (w), 780 (m), 710 (m), 675 (s), 640 (w), 620 (w), 590 (m), 580 (s), 545 (w), 465 (w) cm⁻¹. ¹H NMR: δ7.29 (2 H, s, C₆H₂, BHT), 7.21 [2 H, d, J(H-H) = 8.48 Hz, ο-CH], 6.73 [2 H, d, J(H-H) = 8.5 Hz, m-CH], 2.38 (3 H, s, CH₃, BHT), 2.03 (3 H, s, CH₃), 1.64 [18 H, s, C(CH_3)₃, BHT], -0.088 (6 H, s, Al– CH_3). ¹³C NMR: δ 209.05 (C=O), 155.60 (OC, BHT), 144.30 (CC=O), 138.69 (o-C, BHT), 132.51 (ClC), 132.29 (o-C), 129.45 (m-C), 126.17 (m-C, BHT), 125.42 (p-C, BHT), 35.11 [C(CH₃)₃, BHT], 31.30 [C(CH_3)₃, BHT], 25.86 (O= CCH_3), 21.51 (CH_3 , BHT), -5.58 (Al– CH_3). AlMe₂(BHT)(O=CMe₂) (13): yield 65–75%; mp 100–101 °C. Anal. Calcd for C₂₀H₃₅AlO₂: C, 71.81; H, 10.54. Found: C, 71.59; H, 9.74. IR: 1665 (s), 1270 (s), 1250 (s), 1215 (sh), 1190 (s), 1120 (w), 1080 (w), 1020 (w), 950 (w), 920 (w), 870 (s), 800 (w), 780 (w), 670 (s), 610 (w), 565 (m) cm⁻¹. ¹H NMR: δ 7.24 (2 H, s, C₆H₂, BHT), 2.36 (3 H, s, CH₃, BHT), 1.60 [18 H, s, C(CH₃)₃, BHT], 1.45 [6 H, s, CH₃, (CH₃)₂CO], –0.281 (6 H, s, Al–CH₃). ¹³C NMR: δ 225.69 (O=C), 155.51 (OC, BHT), 138.58 (o-C, BHT), 126.06 (m-C, BHT), 125.13 (p-C, BHT), 35.04 [C(CH₃)₃, BHT], 31.28 [C(CH₃)₃, BHT], 30.87 (CH₃), 21.52 (CH₃, BHT), –6.09 (Al–CH₃). AlMe₂(BHT)[O=C(Me)^tBu] (14): yield ~85%; mp 95–97 °C. Anal. Calcd for $C_{23}H_{41}O_2A$ l: C, 73.36; H, 10.97. Found: C, 73.71; H, 10.27. IR: 1640 (s), 1385 (s), 1370 (s), 1350 (s), 1285 (sh), 1275 (s), 1255 (sh), 1215 (w), 1185 (w), 1150 (s), 1120 (w), 1040 (w), 1020 (w), 965 (w), 945 (w), 935 (w), 915 (w), 870 (s), 860 (s), 835 (w), 800 (w), 770 (m), 700 (sh), 670 (s), 610 (w), 570 (m), 540 (w), 475 (w) cm⁻¹. ¹H NMR: δ 7.26 (2 H, s, C_6H_2 , BHT), 2.36 (3 H, s, CH_3 , BHT), 1.83 (3 H, s, CH_3 , ^tBuMeCO), 1.62 [18 H, s, $C(CH_3)_3$, 13C NMR: δ 233.55 (C=O), 155.54 (OC, BHT), 138.70 (o-C, BHT), 126.10 (m-C, BHT), 125.32 (p-C, BHT), 46.23 (CH_3 , ^tBuMeCO), 35.24 [$C(CH_3)_3$, BHT], 31.59 [$C(CH_3)_3$, BHT], 26.22 [$C(CH_3)_3$, ^tBuMeCO], 25.88 [$C(CH_3)_3$, ^tBuCOMe], 21.67 (CH_3 , BHT), -5.55 (Al- CH_3). AlMe₂(BHT)[O=C(C₅H₉)-4-Ph] (15): yield 73%; mp 96–97 °C. Anal. Calcd for $C_{29}H_{43}O_2Al$: C, 77.29; H, 9.61. Found: C, 77.08; H, 9.10. IR: 1670 (s), 1285 (s), 1265 (sh), 1220 (w), 1190 (m), 1170 (m), 1160 (sh), 1125 (w), 1065 (w), 1020 (w), 880 (s), 865 (m), 800 (w), 775 (w), 760 (m), 695 (s), 670 (s), 605 (w) cm⁻¹. ¹H NMR: δ 7.26 (2 H, s, C_6H_2 , BHT), 7.16–7.09 (4 H, m, p-+ m-CH, Ph), 6.83 [2 H, d, J(H-H) = 6.8 Hz, o-CH, Ph], 2.42 (1 H, m, γ -CH), 2.36 (3 H, s, $C(H_3)_3$, BHT], -0.189 (6 H, s, A-CH₃), ¹³C NMR: δ 230.38 (C=O), 155.53 (OC, BHT), 142.95 (CCH, Ph), 138.59 (o-C, BHT), 128.97 (o-C, Ph), 127.29 (p-C, Ph), 126.10 (m-C, BHT), 125.14 (p-C, BHT), 41.32 (CC=O), 41.12 (β -C), 35.27 [$C(CH_3)_3$, BHT], 33.30 (γ -C), 31.58 [$C(CH_3)_3$, BHT], 21.74 (CH_3 , BHT), -5.46 (A-CH₃). $AlMe(BHT)[O=C(Ph)HC(CH_3)C(Et)(Ph)O]$ O=C(Et)Ph (1.54 mL, 11.37 mmol) was added via syringe to a toluene (30 mL) solution of AlMe₂(BHT)OEt₂ (2.0 g, 5.70 mmol), and the resulting orange solution was stirred for 4 h. The solvent was then removed under vacuum to leave an orange oil. This was washed with pentane, resulting in a yellow solid, which was recrystallized from a 50:50 pentane/ether solvent mixture (20 mL): yield $\sim 70\%$; mp 159-161 °C. Anal. Calcd for $C_{34}H_{45}O_3Al$: C, 77.23; H, 8.57. Found: C, 77.29; H, 8.55. IR: 1600 (m), 1585 (m), 1558 (s), 1380 (s), 1358 (m), 1300 (m), 1280 (m), 1260 (m), 1250 (m), 1220 (w), 1210 (m), 1200 (m), 1190 (m), 1175 (w), 1165 (m), 1155 (m), 1125 (w), 1100 (w), 1090 (w), 1075 (w), 1060 (m), 1035 (w), 1005 (m), 985 (m), 955 (w), 930 (m), 895 (s), 865 (m), 840 (m), 835 (sh), 810 (w), 795 (sh), 780 (m), 755 (s), 730 (s), 700 (s), 670 (s), 660 (sh), 625 (m) cm⁻¹. ¹H NMR: δ 7.85 [2 H, d, J(H-H) = 7.2 Hz, o-CH], 7.65 (2 H, m, o-CH), 7.32 (2 H, s, C_6H_2 , BHT), 6.9-7.2 (6 H, m, m- + p-CH), 3.75 [1 H, q, J(H-H) = 6.4 Hz, HCCH₃], 2.39 (3 H, s, CH₃, BHT), 1.80 [18 H, s, C(CH₃)₃, BHT], 1.57 (3 H, m, CH_2CH_3), 1.14 [3 H, d, J(H-H) = 6.4 Hz, $HCCH_3$], 0.82 [3 H, t, J(H-H)] = 6.67 Hz, CH_2CH_3], -0.088 (3 H, s, Al- CH_3). ¹³C NMR: δ 222.27 (C=O), 154.79 (OC, BHT), 146.08, 139.01, 138.03 (o-C, BHT), 134.29, 131.00, 129.69, 128.27, 126.78, 126.55, 126.10, 125.65, 80.82 [OC(Ph)Et], 50.99 (CHCH₃), 36.96 (CHCH₃), $35.02 \ [C(CH_3)_3, BHT], 31.52 \ [C(CH_3)_3, BHT], 21.60 \ (CH_3, BHT), 15.12 \ (CH_2CH_3), 8.14 \ (CH_2CH_3), -10.50 \ (Al-CH_3).$ AlMe(BHT)₂[O=C(OMe)Ph] (17). AlMe(BHT)₂ (1.0 g, 2.0 mmol) was dissolved in pentane (30 mL). O=C(OMe)Ph (0.26 mL, 2.0 mmol) in pentane (30 mL) was added slowly dropwise via cannula at room temperature under nitrogen. A clear pale yellow solution resulted. After the mixture was stirred for ca. 1.5 h, the solvent was removed under vacuum to leave a pale yellow residue. This was washed once with pentane (30 mL) and filtered. The filtrate was reduced in volume and cooled (-20 °C) overnight. The remaining solid was recrystallized from a pentane/toluene solvent mixture. Crystalline product was also obtained from the filtrate: yield ~80%, mp 124–126 °C. Anal. Calcd for $C_{39}H_{57}AlO_4$: C, 75.93; H, 9.31. Found: C, 75.41; H, 9.38. IR: 1640 (s), 1600 (m), 1580 (m), 1250 (s), 1200 (s), 1180 (sh), 1155 (w), 1135 (w), 1120 (w), 1100 (sh), 1070 (w), 1020 (m), 1000 (sh), 940 (m), 920 (w), 875 (s), 850 (m), 800 (w), 770 (m), 715
(s), 670 (s), 650 (s) cm⁻¹. ¹H NMR: δ 7.82 [2 H, d, J(H-H) = 8.0 Hz, o-C₆ H_1 , 7.18 (4 H, s, C₆ H_2 , BHT), 6.95 [1 H, t, J(H-H) = 8.0 Hz, o-C₆ H_1 , 6.79 [2 H, t, J(H-H) = 8.0 Hz, m-C₆ H_2], 3.37 (3 H, s, OCH₃), 2.32 (6 H, s, CH₃, BHT), 1.55 [36 H, s, C(CH₃)₃, BHT], 0.093 (3 H, s, Al-CH₃). ¹³C NMR: δ 172.51 (C=O), 155.49 (OC, BHT), 138.77 (o-C, BHT), 136.12 (CC=O, Ph), 131.84 (o-C, Ph), 128.77 (m-C, Ph), 128.26 (p-C, Ph), 126.19 (m-C, BHT), 125.63 (p-C, BHT), 56.57 (OCH₃), 35.40 [C(CH₃)₃, BHT], 31.87 [C(CH₃)₃, BHT], 21.31 (CH₃, BHT), -3.12 (Al-CH₃). AlEt(BHT)₂[O=C(OMe)Ph] (18) was prepared in a fashion similar to that for the methyl analogue: mp 116-118 °C. Anal. Calcd for C₄₀H₅₉O₄Al: C, 76.15; H, 9.42. Found: C, 75.47; H, 9.35. IR: 1600 (s), 1575 (m), 1280 (sh), 1250 (s), 1220 (sh), 1200 (m), 1155 (w), 1145 (w), 1120 (w), 1070 (w), 1020 (w), 1000 (w), 990 (w), 965 (w), 945 (m), 920 (w), 880 (s), 860 (s), 800 (w), 770 (m), 720 (s), 670 (w), 620 (s) cm⁻¹. ¹H NMR: δ 7.90 [2 H, d, J(H–H) = 7.5 Hz, o-C₆ H_2], 7.17 (4 H, s, C₆ H_2 , BHT), 6.98 [1 H, t, J(H-H) = 7.5 Hz, $p \cdot C_6 H$], 6.85 [2 H, t, J(H-H)] = 7.5 Hz, $m \cdot C_6 H_2$], 3.46 $(3 \text{ H, s, OC}H_3)$, 2.30 $(6, \text{ H, s, C}H_3, \text{BHT})$, 1.56 $(36 \text{ H, s, C}(\text{C}H_3)_3, \text{C}(\text{C}H_3)_3)$ BHT), 1.32 [3 H, t, J(H-H) = 8 Hz, Al-CH₂CH₃], 0.682 (2 H, q, $J(H-H) = 8.0 \text{ Hz}, \text{Al-C}H_2\text{CH}_3$). ¹³C NMR: δ 171.5 (C=O), 155.38 (OC, BHT), 138.73 (o-C, BHT), 135.37 (CC=O, Ph), 131.45 (o-C, Ph), 128.65 (m-C, Ph), 126.36 (m-C, BHT), 125.90 (p-C, BHT), 125.78 (p-C, Ph), 55.65 (OCH₃), 35.46 [C(CH₃)₃, BHT], 32.06 $[C(CH_3)_3, BHT]$, 21.28 (CH_3, BHT) , 9.86 $(Al-CH_2CH_3)$, 5.43 $(Al-CH_2CH_3)$ $AlMe_2(BHT)[O=C(OMe)Ph]$ (19). BHT-H (2.2 g, 10.0 mmol) was dissolved in 20 mL of pentane. AlMe₃ (5 mL of a 2 M solution; 0.01 mmol) was added via syringe. The resulting solution was stirred for ¹/₂ h. A pentane (20 mL) solution of O=C(OMe)Ph (1.25 mL, 0.01 mmol) was added dropwise to the reaction mixture. A white precipitate formed, which was filtered and recrystallized from pentane: yield ~70%; mp 109-112 °C. Anal. Calcd for C₂₅H₃₇O₃Al: C, 72.78; H, 9.03. Found: C, 72.12; H, 9.07. IR: 1640 (s), 1600 (m), 1580 (m), 1275 (s), 1190 (m), 1125 (w), 1020 (w), 1000 (sh), 930 (m), 870 (s), 860 (s), 805 (w), 775 (w), 710 (s), 665 (s), 610 (w) cm⁻¹. ¹H NMR: δ 7.93 [2 H, d, J(H–H) = 7.3 Hz, o-C₆ H_2], 7.27 (2 H, s, C₆ H_2 , BHT), 6.99 (1 H, t, p-C₆H), 6.85 (2 H, t, m-C₆ H_2), 3.37 (3 H, s, OC H_3), 2.37 (3 H, s, C H_3 , BHT), 1.62 [18 H, s, C(CH_3)₃, BHT], -0.109 (6 H, s, Al– CH_3). ¹³C NMR: δ 172.61 (C=O), 155.57 (OC, BHT), 138.77 (o-C, BHT), 136.15 (CC=O, Ph), 131.67 (o-C, Ph), 128.89 (m-C, Ph), 126.37 (p-C, Ph), 126.15 (m-C, BHT), 125.33 (p-C, BHT), 55.10 (OCH₃), 35.11 $[C(CH_3)_3, BHT], 31.31 [C(CH_3)_3, BHT], 25.10 (CH_3, BHT), -5.23$ $(Al-CH_3)$ $AlEt_2(BHT)[O=C(OMe)(Ph)]$ (20). To BHT-H (2.2 g, 10.0 mmol) in pentane (20 mL) was added AlEt₃ (10 mL of a 1 M solution, 10.0 mmol) slowly via syringe. The resulting solution was stirred for ¹/₂ h. The O=C(OMe)Ph (1.24 mL, 10.0 mmol) in pentane (20 mL) was added dropwise via cannula. A clear pale yellow solution resulted. After the mixture was stirred for 2 h, the solvent was removed to yield a pale yellow residue. The residue was washed with pentane, and the washings were filtered, reduced in volume, and set aside in the freezer (-20 °C). A crystalline product formed overnight. The remaining white solid was recrystallized from a pentane/toluene (50:20) solvent mixture to yield more crystalline product: yield ~75%; mp 107-110 °C. Anal. Calcd for $C_{27}H_{41}O_3Al$: C, 73.60; H, 9.37. Found: C, 73.31; H, 9.20. IR: 1630 (s), 1600 (m), 1580 (m), 1270 (s), 1220 (w), 1190 (m), 1130 (w), 1125 (w), 1100 (w), 1080 (w), 1025 (w), 1000 (w), 985 (m), 975 (w), 940 (m), 925 (w), 865 (s), 800 (w), 775 (m), 715 (s), 680 (w), 635 (s), 600 (w), 575 (m) cm⁻¹. ¹H NMR: δ 8.05 [2 H, d, J(H-H) = 7.25 Hz, $o-C_6H_2$, Ph], 7.26 (2 H, s, C_6H_2 , BHT), 7.00 [1 H, t, J(H-H) = 7.25 Hz, $p-C_6H$], 6.88 [2 H, t, J(H-H) =7.25 Hz, m-C₆ H_2], 3.47 (3 H, s, OC H_3), 2.36 (3 H, s, C H_3 , BHT), 1.60 [18 H, s, $C(CH_3)_3$, BHT], 1.33 [6 H, t, J(H-H) = 8.0 Hz, $Al-CH_2CH_3$], 0.55 [4 H, q, J(H-H) = 8.0 Hz, $Al-CH_2CH_3$]. ¹³C NMR: δ 172.61 (C=O), 155.77 (OC, BHT), 138.56 (o-C, BHT), 136.12 (CC=O, Ph), 131.53 (o-C, Ph), 128.91 (m-C, Ph), 126.55 (p-C, Ph), 126.14 (m-C, BHT), 125.30 (p-C, BHT), 55.89 (OCH₃), 35.07 [C(CH₃)₃, BHT], 31.32 [C(CH₃)₃, BHT], 21.47 (CH₃, BHT), 10.14 (Al-CH₂CH₃), 3.45 (Al-CH₂CH₃). AlMe(BHT)₂[O= $C(NH_2)Me$] (21). To AlMe(BHT)₂ (3.0 g, 6.24 mmol) and O=C(NH₂)Me (0.368 g, 6.24 mmol) was added degassed pentane (30 mL). AlMe(BHT)₂ dissolved, leaving the insoluble acetamide. The resulting mixture was stirred overnight to give a white suspension, which was filtered and dried under vacuum: yield 92%; mp 147-149 °C. Anal. C₃₃H₅₄O₃NAl: C, 73.42; H, 10.08; N, 2.59. Found: C, 72.55; H, 10.11; N, 2.36. IR: 3387 (s), 1546 (s), 1388 (s), 1377 (s), 1362 (s), 1297 (s), 1280 (s), 1266 (s), 1206 (m), 1188 (sh), 1168 (m), 1127 (m), 1043 (w), 1026 (w), 1010 (w), 964 (s), 935 (s), 924 (sh), 908 (s), 892 (m), 866 (m), 858 (m), 772 (m), 739 (s), 710 (w), 656 (s), 619 (s), 593 (m), 579 (w), 521 (w), 488 (s), 384 (m) cm⁻¹. ¹H NMR $(CDCl_3)$: δ 7.01 (4 H, s, C_6H_2 , BHT), 6.50 (1 H, s, NH), 6.11 (1 H, s, NH), 2.25 (6 H, s, CH_3 , BHT), 2.15 (3 H, s, CH_3CONH_2), 1.41 [36 H, s, $C(CH_3)_3$], -0.53 (3 H, s, Al- CH_3). ¹³C NMŘ (CDCl₃): δ 176.39 (O=C), 154.17 (OC, BHT), 139.04 (o-C, BHT), 126.06 $(m\text{-}C, \text{BHT}), 125.23 \ (p\text{-}C, \text{BHT}), 35.03 \ [C(\text{CH}_3)_3, \text{BHT}], 31.39 \ [C(\text{CH}_3)_3, \text{BHT}], 22.43 \ (O=\text{CCH}_3), 21.03 \ (CH_3, \text{BHT}), -5.28$ (Al-CH₃). ²⁷Al NMR (CDCl₃): δ 66.0 ($w_{1/2}$ = 3660 Hz). AlMe(BHT)₂[O=C(NPh₂)Me] (22) was prepared in a manner analogous to that for 21: yield ca. 90%; mp 228 °C. Anal. Calcd for C₄₅H₆₂AlNO₃: C, 78.09; H, 9.04; N, 2.02. Found: C, 78.18; H, 9.47; N, 1.81. IR: 1605 (s), 1589 (s), 1566 (s), 1279 (s), 1263 (s), 1243 (s), 1223 (sh), 1202 (s), 1172 (w), 1156 (w), 1124 (m), 1076 (m), 1035 (m), 1023 (sh), 1003 (s), 969 (w), 953 (w), 924 (w), 912 (w), 885 (s), 864 (s), 848 (s), 811 (w), 776 (s), 757 (s), 714 (s), 698 (s), 690 (s), 670 (s), 656 (s), 648 (s), 622 (w), 610 (w), 601 (m), 587 (m), 567 (m), 556 (m), 543 (w), 527 (w), 486 (s), 461 (s) cm⁻¹. ¹H NMR (CDCl₃): δ 7.14–7.46 [10 H, m, N(C₆H₅)₂], 6.93 (4 H, s, C₆H₂, BHT), 2.24 (6 H, s, CH₃, BHT), 2.18 (3 H, s, CH₃CO), 1.29 [36 H, s, $C(CH_3)_3$, BHT], -0.50 (3 H, s, $Al-CH_3$). ¹³C NMR $(CDCl_3)$: δ 175.71 (O=C), 155.15 (OC, BHT), 141.58, 140.15 (NC), 138.65 (o-C, BHT), 130.56, 129.89 (o-C), 129.63 (m-C), 126.71, 126.52 (p-C), 125.57 (m-C, BHT), 124.38 (p-C, BHT), 34.88 [C- $(CH_3)_3$, BHT], 31.39 $[C(CH_3)_3$, BHT], 23.58 $(OCCH_3)$, 21.03 (CH_3) BHT), -4.29 (Al-CH₃). ²⁷Al NMR (CDCl₃): δ 70.2 ($w_{1/2}$ = 4240 AlMe(BHT)₂[O=C(NMe₂)Ph] (23) was prepared in a manner analogous to that for 21: yield ca. 85%; mp 160 °C. Anal. Calcd for C₄₀H₆₀AlNO₃: C, 76.27; H, 9.60; N, 2.22. Found: C, 76.35; H, 9.79; N, 1.91. IR: 1603 (s), 1578 (sh), 1520 (s), 1290 (sh), 1277 (s), 1260 (s), 1247 (s), 1217 (sh), 1200 (s), 1160 (w), 1122 (w), 1104 (w), 1075 (w), 1050 (w), 1028 (w), 1001 (w), 971 (w), 967 (w), 953 (w), 924 (w), 909 (w), 881 (s), 859 (s), 848 (s), 810 (w), 779 (s), 749 (m), 727 (m), 697 (s), 667 (s), 640 (s), 579 (m), 564 (m), 461 (m), 442 (m) cm⁻¹. ¹H NMR (CDCl₃): δ 7.49 [1 H, t, J(H–H) = 7.83 Hz, p-CH], 7.41 [2 H, t, J(H-H) = 7.83 Hz, m-CH], 7.20[2 H, d, J(H-H) = 7.8 Hz, o-CH], 6.93 (4 H, s, C_6H_2 , BHT), 3.35 $(3 \text{ H, s, NC}H_3), 2.98 (3 \text{ H, s, NC}H_3), 2.22 (6 \text{ H, s, $\tilde{C}H_3$, BHT}), 1.32$ [36 H, s, $C(CH_3)_3$, BHT], -1.12 (3 H, s, Al- CH_3). ¹³C NMR (CDCl₃): δ 172.64 (C=O), 155.36 (OC, BHT), 138.46 (o-C, BHT), 131.26 (NC), 131.04 (o-C), 129.04 (m-C), 126.54 (p-C), 125.57 (m-C, BHT), 124.22 (p-C, BHT), 41.08, 38.32 (NCH₃), 34.96 [C(CH₃)₃,BHT], 31.51 [$\dot{C}(C\dot{H}_3)_3$], 21.00 ($\dot{C}\dot{H}_3$, BHT), -5.33 (Al- $\dot{C}\dot{H}_3$). ²⁷Al NMR (CDCl₃): δ 71.2 ($w_{1/2}$ = 4245 Hz). Al(BHT)₂[O=C(NMe)Ph] (24) was prepared in a manner analogous to that for 21: yield ca. 90%; mp 209–211 °C. Anal. Calcd for $C_{38}H_{54}AlNO_3$: C, 76.08; H, 9.08; N, 2.33. Found: C, 76.01; H, 9.36; N, 2.20. IR: 1597 (m), 1584 (m), 1547 (s), 1209 (m), 1202 (sh), 1173 (w), 1156 (w), 1125 (m), 1074 (m), 1031 (w), 1001 (w), 984 (w), 964 (s), 934 (s), 911 (s), 905 (s), 888 (m), 865 (m), 860 (m), 845 (m), 832 (w), 772 (m), 752 (m), 722 (w), 695 (s), 661 (s), 626 (s), 618 (s), 596 (m) cm⁻¹. ¹H NMR: δ 7.18 (4 H, ε, C_6H_2 , BHT), 6.99 [2 H, t, J(H-H) = 7.63 Hz, m- C_6H], 6.87–6.91 [3 H, m, o- + p- C_6H], 2.26 (6 H, s, C_8H_3 , BHT), 1.54 [39 H, s, $C(CH_3)_3$ and CH_3CO]. ¹³C NMR: δ 185.26 (C—O), 152.65 (OC, BHT), 139.87, 138.65 (o-C, BHT), 129.34, 127.38, 126.73, 126.31 (m-C, BHT), 125.21 (p-C, BHT), 35.18 [$C(CH_3)_3$, BHT], 31.52 [$C(CH_3)_3$, BHT], 21.40 (CH_3 , BHT), 16.09 (CH_3CONPh). ²⁷Al NMR: δ 35.9 (w_{1/2} = 6652 Hz). Molecular weight (benzene): calcd for $C_{38}H_{54}AlNO_3$, 599.9; found, 597. Table IV. Summary of X-ray Diffraction Data | | | y | | |-------------------------------------|---|---|---| | compd | $AlMe(BHT)_2[O=C(H)^tBu] (1)$ | $AlMe_2(BHT)(O=CPh_2)$ (8) | AlMe(BHT) ₂ [O=C(OMe)Ph] (17) | | formula | $C_{36}H_{59}AlO_3$ | $C_{30}H_{39}AlO_2$ | $C_{39}H_{57}AlO_4$ | | space group | $P2_1/n$ | $Pn2_1a$ | $P\bar{1}$ | | a, Å | 10.0765 (5) | 19.133 (3) | 9.394 (2) | | b, Å | 26.201 (2) | 14.638 (2) | 9.741 (3) | | c ,
$\mathbf{\mathring{A}}$ | 14.0106 (4) | 10.022 (1) | 23.091 (7) | | α, deg | | | 91.43 (2) | | β , deg | 103.638 (3) | | 91.93 (2) | | γ , deg | | | 116.41 (2) | | V, A ³ Z | 3595 (3) | 2807 (2) | 1889 | | Z | 4 | 4 | 2 | | D(calcd), g cm ⁻³ | 1.051 | 1.089 | 1.089 | | cryst dimens, mm | $0.20 \times 0.24 \times 0.32$ | $0.15 \times 0.18 \times 0.22$ | $0.22 \times 0.24 \times 0.33$ | | temp, °C | 23 | 23 | 23 | | radiationa | $Cu K\alpha (\lambda = 1.5418 \text{ Å})$ | $Cu K\alpha (\lambda = 1.5418 \text{ Å})$ | Mo K α ($\lambda = 0.71069 \text{ Å}$) | | μ , cm ⁻¹ | 6.91 | 7.70 | 0.85 | | 2θ limits, deg | 2.0-110.0 | 2.0-110.0 | 0.0-40.0 | | no. of collected data | 5040 | 2098 | 3907 | | no. of unique data | 4717 | 2098 | 3714 | | no. of obsd data $[I > 3\sigma(I)]$ | 3475 | 968 | 1095 | | R^b | 0.0576 | 0.0552 | 0.0599 | | $R_{\mathbf{w}}^{}c}$ | 0.0623 | 0.0550 | 0.0689 | | final residual, e Å ⁻³ | 0.24 | 0.19 | 0.21 | | | | | | ^a Graphite monochromator. ${}^{b}R = \sum [|F_{o}| - |F_{c}|] / \sum |F_{o}|$. ${}^{c}R_{w} = [\sum (w[|F_{o}| - |F_{c}|]^{2}) / \sum w(F_{o})^{2}]^{1/2}$. Al(BHT)₂[O=C(NH)Me] (25). A toluene solution (50 mL) of 21 (4.0 g, 7.63 mmol) was heated overnight (80 °C). The solvent was removed under vacuum, giving a white solid, which was recrystallized from pentane (30 mL): yield ca. 75%; mp 200-205 °C. Anal. Calcd for C₃₂H₅₀AlNO₃: C, 73.38; H, 9.62; N, 2.67. Found: C, 73.57; H, 9.80; N, 2.72. IR: 3387 (m), 1633 (s), 1532 (s), 1293 (sh), 1262 (s), 1226 (sh), 1204 (m), 1157 (w), 1125 (m), 1043 (w), 1024 (w), 957 (m), 914 (s), 890 (s), 861 (s), 772 (s), 700 (w), 641 (s), 608 (s), 576 (w), 540 (w), 524 (w), 405 (m), 388 (m) cm⁻¹. 1 H NMR: δ 7.16 (4 H, s, C₆H₂, BHT), 6.66 (1 H, s, NH), 2.26 (6 H, s, CH₃, BHT), 1.76 (3 H, s, O=CCH₃), 1.44 [36 H, s, C(CH₃)₃, BHT]. ¹³C NMR: δ 178.47 (O=C), 153.60 (OC, BHT), 138.35 (o-C, BHT), 126.80 (p-C, BHT), 126.46 (m-C, BHT), 35.11 [C(CH₃)₃, BHT], 32.01 [C(CH₃)₃, BHT], 26.74 (O=CCH₃), 21.25 (CH₃, BHT). 27 Al NMR: δ 37.1 ($w_{1/2}$ = 6720 Hz). Molecular weight (benzene): calcd for $C_{32}H_{50}$ AlNO₃, 523.7; found, 483. AlMe(BHT)₂($O_2NC_6H_4$ -p-Me) (26). A pentane (50 mL) solution of O₂NC₆H₄-p-Me (0.85 g, 6.19 mmol) was added dropwise to AlMe(BHT)₂ (3.0 g, 6.24 mmol) in pentane (25 mL). A deep blue-black color developed immediately, and as the addition proceeded, a brown-black precipitate formed. Upon completion of the addition the resulting solution was stirred for 1 h and then filtered. The black precipitate was washed once with pentane (30 mL) and then dried under vacuum: yield ca. 90%; mp 110-112 °C. Anal. Calcd for C₃₈H₅₆O₄AlN: C, 73.87: H, 9.13; N, 2.26. Found: C, 73.58; H, 8.49; N, 2.01. IR: 1600 (w), 1517 (m), 1510 (sh), 1340 (w), 1300 (sh), 1290 (sh), 1265 (s), 1230 (w), 1205 (w), 1185 (m), 1130 (w), 1110 (w), 1020 (w), 960 (w), 900 (sh), 890 (s), 860 (m), 840 (w), 780 (w), 740 (w), 700 (sh), 665 (m), 630 (w) cm⁻¹. ¹H NMR: δ 7.72 [2 H, d, J(H-H) = 8.5 Hz, C_6H_2], 7.20 (4 H, s, C_6H_2 , BHT), 6.39 [2 H, d, J(H–H) = 8.5 Hz, C_6H_2], 2.30 (6 H, s, CH_3 , BHT), 1.68 (3 H, s, CH_3), 1.64 [36 H, s, $C(CH_3)_3$, BHT], 0.045 (3 H, s, $Al-CH_3$). ¹³C NMR: δ 154.02 (OC, BHT), 149.12 (NO_2C) , 144.70 $(CH_3\overline{C})$, 138.73 (o-C, BHT), 130.21 (o-C), 126.63 (p-C, BHT), 126.30 (m-C, BHT), 124.56 (m-C), 35.28 $[C(CH_3)_3,$ BHT], 31.92 [C(CH_3)₃, BHT], 21.38 (CH_3 , BHT), 21.32 (CH_3), -6.68 (Al- CH_3). ²⁷Al NMR: δ 70.3 ($w_{1/2}$ = 3418 Hz). $[CpFe(CO)_2]_2AlMe(BHT)_2$ (27). $AlMe(BHT)_2$ (2.0 g, 4.16 mmol) and $[CpFe(CO)_2]_2$ (1.47 g, 4.15 mmol) were stirred under nitrogen in pentane (50 mL). The deep red-black color of the [CpFe(CO)₂]₂ gradually lightened, and a bright red precipitate formed. The reaction mixture was stirred overnight and filtered, and the residue was washed once with pentane (50 mL) and dried under vacuum: yield 92%; mp 199–200 °C. Anal. Calcd for $C_{55}H_{69}O_6Fe_2Al$: C, 79.14; H, 8.33. Found: C, 78.82; H, 8.01. IR: 2030 (s), 1985 (s), 1815 (s), 1600 (s), 1290 (sh), 1275 (s), 1240 (sh), 1225 (w), 1205 (m), 1125 (w), 1065 (w), 1015 (w), 1005 (w), 955 (w), 880 (s), 870 (s), 855 (m), 840 (w), 830 (m), 780 (w), 770 (w), 695 (s), 660 (s), 625 (m), 610 (sh), 575 (w), 555 (w), 535 (m), 490 (m) cm⁻¹. ¹H NMR: δ 7.25 (4 H, s, C₆H₂, BHT), 4.23 (10 H, s, Table V. Fractional Coordinates and Equivalent Isotropic Thermal Parameters (Å2) of the Non-Hydrogen Atoms in $AlMe(BHT)_2[O=C(H)^tBu]$ (1) | $AIMe(BHT)_{2}[O=C(H)^{*}Bu] (1)$ | | | | | | | |-----------------------------------|-------------|-------------|-------------|-------------|--|--| | atom | x/a | y/b | z/c | U(eqv) | | | | Al(1) | 0.0760 (1) | 0.36781 (5) | 0.74792 (9) | 0.043 (4) | | | | O(1) | 0.0407(3) | 0.4282(1) | 0.6993(2) | 0.045(1) | | | | O(2) | 0.0977(3) | 0.3228(1) | 0.6626(2) | 0.045(1) | | | | O(3) | 0.2626(3) | 0.3709(1) | 0.8211(2) | 0.061 (13) | | | | Me | -0.0322(5) | 0.3541(2) | 0.8440 (3) | 0.078(4) | | | | C(1) | -0.0499(4) | 0.4647(1) | 0.7145(3) | 0.045 (8) | | | | C(2) | -0.1856(4) | 0.4645(2) | 0.6558(3) | 0.047(2) | | | | C(3) | -0.2796(5) | 0.4970(2) | 0.6831(3) | 0.057(2) | | | | C(4) | -0.2445(5) | 0.5308(2) | 0.7596(3) | 0.063 (6) | | | | C(5) | -0.1090(5) | 0.5347(2) | 0.8080(3) | 0.061 (19) | | | | C(6) | -0.0082(5) | 0.5029(2) | 0.7858(3) | 0.052 (11) | | | | C(21) | -0.2290(4) | 0.4315(2) | 0.5626(3) | 0.051(3) | | | | C(22) | -0.3747(5) | 0.4462 (2) | 0.5030 (4) | 0.074 (11) | | | | C(23) | -0.1332(5) | 0.4421 (2) | 0.4951(3) | 0.061 (12) | | | | C(24) | -0.2342(5) | 0.3745(2) | 0.5854 (4) | 0.070 (9) | | | | C(41) | -0.3518 (6) | 0.5633(2) | 0.7903 (4) | 0.090 (13) | | | | C(61) | 0.1420(5) | 0.5119(2) | 0.8421 (3) | 0.060 (9) | | | | C(62) | 0.1619 (6) | 0.5665(2) | 0.8839 (5) | 0.101 (17) | | | | C(63) | 0.1806 (5) | 0.4754(2) | 0.9294 (3) | 0.076 (21) | | | | C(64) | 0.2415 (5) | 0.5062 (2) | 0.7744(4) | 0.076 (15) | | | | C(11) | 0.1934 (4) | 0.2892(1) | 0.6449 (3) | 0.042(3) | | | | C(12) | 0.2659 (4) | 0.3018 (2) | 0.5719 (3) | 0.047 (6) | | | | C(13) | 0.3794(4) | 0.2720(2) | 0.5683(3) | 0.057 (3) | | | | C(14) | 0.4189 (5) | 0.2306(2) | 0.6287 (3) | 0.062(3) | | | | C(15) | 0.3357(5) | 0.2153(2) | 0.6890(3) | 0.056 (5) | | | | C(16) | 0.2197(4) | 0.2429(2) | 0.6965(3) | 0.045 (6) | | | | C(121) | 0.2206(5) | 0.3447(2) | 0.4965 (3) | 0.055 (9) | | | | C(122) | 0.2438(5) | 0.3982 (2) | 0.5416 (3) | 0.067 (10) | | | | C(123) | 0.0688 (5) | 0.3371(2) | 0.4455 (3) | 0.063 (12) | | | | C(124) | 0.3008 (5) | 0.3425(2) | 0.4144 (3) | 0.083 (15) | | | | C(141) | 0.5487(5) | 0.2008(2) | 0.6274(4) | 0.092 (11) | | | | C(161) | 0.1295 (4) | 0.2206(2) | 0.7618(3) | 0.055(4) | | | | C(162) | -0.0243 (5) | 0.2287(2) | 0.7122(3) | 0.069 (6) | | | | C(163) | 0.1488 (6) | 0.1624 (2) | 0.7737(4) | 0.078 (20) | | | | C(164) | 0.1686 (5) | 0.2437(2) | 0.8657 (3) | 0.067 (11) | | | | C(31) | 0.3690 (5) | 0.3635 (2) | 0.8048 (4) | 0.075 (15) | | | | C(32) | 0.5055 (5) | 0.3617 (2) | 0.8733(4) | 0.065 (11) | | | | C(33) | 0.4940 (7) | | 0.9751(4) | 0.198 (158) | | | | C(34) | 0.5810 (6) | | 0.8547(5) | 0.110 (20) | | | | C(35) | 0.5754(7) | 0.3154(3) | 0.8458(7) | 0.177 (113) | | | Cp), 2.31 (6 H, s, C H_3 , BHT), 1.68 [36 H, s, C(C H_3)₃, BHT], 0.14 (3 H, s, Al–C H_3). ¹³C NMR: δ 153.98 (OC, BHT), 138.72 (o-C, BHT), 126.38 (m-C, BHT), 125.81 (p-C, BHT), 89.06 (C_5 H₅), 35.41 $[C(CH_3)_3, BHT], 32.08 [C(CH_3)_3, BHT], 21.38 (CH_3, BHT), -3.56$ $(Al-CH_3).$ Crystallography. Crystals sealed in a glass capillary under Table VI. Fractional Coordinates and Equivalent Isotropic Thermal Parameters (Å2) of the Non-Hydrogen Atoms in AlMe, (BHT) (O=CPh,) (8) | AMIES (BIT) (O CT IIS) (6) | | | | | |----------------------------|------------|------------|-------------|------------| | atom | x/a | y/b | z/c | U(eqv) | | Al | 0.5956 (2) | 0.6801 | 0.1065 (4) | 0.069 (13) | | O(1) | 0.5969 (4) | 0.6110 (6) | 0.2467 (7) | 0.058 (13) | | O(2) | 0.5253(4) | 0.6252 (6) | -0.0022 (8) | 0.075 (9) | | Me(1) | 0.6781 (6) | 0.670(1) | -0.009 (1) | 0.123 (58) | | Me(2) | 0.5607 (8) | 0.804(1) | 0.121(1) | 0.119 (42) | | C(1) | 0.6247 (6) | 0.5641 (8) | 0.351(1) | 0.044(2) | | C(2) | 0.6280 (6) | 0.4686 (8) | 0.344(1) | 0.052(3) | | C(3) | 0.6566 (6) | 0.4226(9) | 0.455(1) | 0.063(3) | | C(4) | 0.6812 (6) | 0.4688 (9) | 0.567(1) | 0.066(3) | | C(5) | 0.6752 (6) | 0.5617 (9) | 0.570(1) | 0.053(3) | | C(6) | 0.6472 (6) | 0.6118 (8) | 0.467(1) | 0.049(2) | | C(21) | 0.5991(7) | 0.4108 (9) | 0.230(1) | 0.067 (17) | | C(22) | 0.6067 (7) | 0.3091 (9) | 0.250(1) | 0.095 (17) | | C(23) | 0.5195 (6) | 0.431(1) | 0.221(1) | 0.077 (6) | | C(24) | 0.6343 (7) | 0.435(1) | 0.095(1) | 0.103 (27) | | C(41) | 0.7096 (7) | 0.417(1) | 0.684(1) | 0.109 (9) | | C(61) | 0.6384 (7) | 0.7125 (7) | 0.480(1) | 0.061 (25) | | C(62) | 0.5607 (7) | 0.7405 (9) | 0.462(1) | 0.081 (25) | | C(63) | 0.6592(7) | 0.747(1) | 0.621(1) | 0.094 (47) | | C(64) | 0.6851 (6) | 0.7647(9) | 0.383(1) | 0.080 (16) | | C(100) | 0.4655 (6) | 0.5964 (9) | -0.025(1) | 0.069(3) | | C(101) | 0.4509 (6) | 0.5684 (8) | -0.166(1) | 0.055(3) | | C(102) | 0.3823 (6) | 0.5740 (9) | -0.217(1) | 0.059(3) | | C(103) | 0.3735 (7) | 0.5502(9) | -0.352(1) | 0.073 (3) | | C(104) | 0.4272 (6) | 0.5207 (9) | -0.430(1) | 0.076(3) | | C(105) | 0.4947 (6) | 0.5139 (9) | -0.377(1) | 0.073(3) | | C(106) | 0.5056 (6) | 0.5395 (8) | -0.244(1) | 0.060(3) | | C(107) | 0.4100 (6) | 0.5900 (9) | 0.076(1) | 0.069(3) | | C(108) | 0.3641 (6) | 0.521(1) | 0.073(1) | 0.077 (3) | | C(109) | 0.3161 (7) | 0.506(1) | 0.180(1) | 0.104 (4) | | C(110) | 0.3150 (8) | 0.572(1) | 0.272(2) | 0.108 (5) | | C(111) | 0.3581 (8) | 0.642(1) | 0.279(2) | 0.117 (5) | | C(112) | 0.4099(7) | 0.655(1) | 0.179(1) | 0.095 (4) | | | | | | | argon were mounted on the goniometer of an Enraf-Nonius CAD-4 automated diffractometer. Final lattice parameters, as determined from a
least-squares fit of the setting angles of 25 accurately centered reflections $[2\theta > 70^{\circ} (1, 8), 2\theta > 35^{\circ} (17)]$, and other experimental data are given in Table IV. Typical data collection procedures in our laboratory have been described previously.31 Examination of the data, which were corrected for Lorentz and polarization effects but not for absorption, revealed the space groups to be $P2_1/n$ (1), $Pn2_1a$ (nonstandard setting of $Pna2_1$) (8), and $P\bar{1}$ (17). The space groups for the last two structures were determined by symmetry considerations and confirmed by successful structure solution and refinement. Structure solutions were readily accomplished with use of the direct-methods option of SHELX-86,38 through which the bulk of the molecule was located. The remaining atomic coordinates were determined through the generation of difference Fourier maps with SHELX-76.39 Appropriate atoms were treated with anisotropic thermal parameters (all non-hydrogen atoms for 1, all non-aromatic, nonhydrogen atoms in 8 and 17), and hydrogen atoms were included in the models in calculated positions. Due to the low scattering power of the crystals of 8 and 17, final refinement of these structures was performed by using blocked-matrix least squares. Table VII. Fractional Coordinates and Equivalent Isotropic Thermal Parameters (Å2) of the Non-Hydrogen Atoms in AlMe(BHT)₂[O=C(OMe)Ph] (17) | | | | -C(OME)I II | , (11) | |--------|------------|------------|-------------|---------------| | atom | x/a | y/b | z/c | $U({ m eqv})$ | | Al | 0.4196 (5) | 0.4191 (4) | 0.7192 (2) | 0.040 (5) | | O(1) | 0.3458 (9) | 0.4735 (8) | 0.6599 (3) | 0.043 (6) | | O(2) | 0.2988 (9) | 0.3628 (8) | 0.7771(3) | 0.040 (5) | | O(3) | 0.585(1) | 0.5970 (8) | 0.7509(3) | 0.058 (7) | | O(4) | 0.834(1) | 0.7757 (8) | 0.7389(3) | 0.055(3) | | Me | 0.525(1) | 0.296(1) | 0.6935(5) | 0.061 (13) | | C(1) | 0.229(2) | 0.486(1) | 0.6284 (5) | 0.042(3) | | C(2) | 0.086(2) | 0.354(1) | 0.6091 (5) | 0.045 (3) | | C(3) | -0.039(2) | 0.380(1) | 0.5873 (5) | 0.048 (3) | | C(4) | -0.026(2) | 0.521(2) | 0.5774 (5) | 0.051(3) | | C(5) | 0.118(2) | 0.648(1) | 0.5870 (5) | 0.053(3) | | C(6) | 0.250(2) | 0.631(1) | 0.6105 (5) | 0.042(3) | | C(11) | 0.260(1) | 0.363(1) | 0.8328 (6) | 0.040(3) | | C(12) | 0.304(2) | 0.286(1) | 0.8744 (5) | 0.048(3) | | C(13) | 0.275(2) | 0.299(1) | 0.9319 (5) | 0.057 (4) | | C(14) | 0.206(2) | 0.392(2) | 0.9492 (6) | 0.076 (4) | | C(15) | 0.154(2) | 0.457(1) | 0.9083 (6) | 0.061 (4) | | C(16) | 0.173(1) | 0.447(1) | 0.8488 (5) | 0.038(3) | | C(21) | 0.079(2) | 0.194(1) | 0.6064 (6) | 0.054 (24) | | C(22) | 0.073 (2) | 0.123(1) | 0.6655 (6) | 0.076 (18) | | C(23) | 0.227(2) | 0.203(1) | 0.5730 (6) | 0.062 (12) | | C(24) | -0.064(2) | 0.082(1) | 0.5691 (6) | 0.085 (12) | | C(41) | -0.167(2) | 0.539(2) | 0.5523(5) | 0.093 (48) | | C(61) | 0.416(2) | 0.769(1) | 0.6102 (6) | 0.048 (4) | | C(62) | 0.524(2) | 0.716(1) | 0.5765 (5) | 0.056 (8) | | C(63) | 0.417(2) | 0.903 1) | 0.5761 (6) | 0.084(25) | | C(64) | 0.489 (2) | 0.836(1) | 0.6706 (6) | 0.067 (17) | | C(101) | 0.703(2) | 0.716(2) | 0.7677 (6) | 0.054 (4) | | C(102) | 0.713(2) | 0.800(1) | 0.8212(5) | 0.050(3) | | C(103) | 0.603(2) | 0.737(1) | 0.8620 (5) | 0.063 (3) | | C(104) | 0.610(2) | 0.817 (1) | 0.9133 (5) | 0.070 (4) | | C(105) | 0.730(2) | 0.962 (2) | 0.9231 (6) | 0.077(4) | | C(106) | 0.841 (2) | 1.028 (2) | 0.8827 (6) | 0.092 (5) | | C(107) | 0.834 (2) | 0.949 (1) | 0.8314 (5) | 0.067 (4) | | C(108) | 0.839(2) | 0.696(1) | 0.6849(5) | 0.077 (16) | | C(121) | 0.384 (2) | 0.183 (2) | 0.8594 (6) | 0.067 (13) | | C(122) | 0.294(2) | 0.070(1) | 0.8082 (6) | 0.071 (7) | | C(123) | 0.556 (2) | 0.279 (2) | 0.8454 (5) | 0.077 (20) | | C(124) | 0.382 (2) | 0.080(2) | 0.9090 (6) | 0.128 (33) | | C(141) | 0.179 (2) | 0.408 (2) | 1.0126 (6) | 0.127 (6) | | C(161) | 0.100 (2) | 0.515 (2) | 0.8055 (6) | 0.058 (23) | | C(162) | -0.003 (2) | 0.583 (2) | 0.8358 (5) | 0.087 (17) | | C(163) | 0.226 (2) | 0.644 (1) | 0.7746 (5) | 0.076 (10) | | C(164) | -0.011 (2) | 0.391(2) | 0.7619 (6) | 0.082 (13) | Final residuals are listed in Table IV. Scattering factors were taken from ref 40. Final atomic positional parameters are given in Tables V-VII. Anisotropic thermal parameters, hydrogen positions, structure factors, and full bond lengths and angles are available as supplementary material. Acknowledgment. Financial support of this work was provided by ICI Americas, Wilmington, DE, ICI Wilton Materials Research Center, Wilton, UK, and the Milton Foundation. Supplementary Material Available: Tables of positional and isotropic equivalent thermal parameters, anisotropic thermal parameters, and full bond lengths and angles for 1, 8, and 17 and a table of best planes for 8 (17 pages); listings of observed and calculated structure factors for 1, 8, and 17 (34 pages). Ordering information is given on any current masthead page. ⁽³⁷⁾ Holton, J.; Lappert, M. F.; Ballard, D. G. H.; Pearce, R.; Atwood, J. L.; Hunter, W. E. J. Chem. Soc., Dalton Trans. 1979, 45. (38) Sheldrick, G. M. In Crystallographic Computing 3; Sheldrick, G. M., Kruger, C., Goddard, R., Eds.; Oxford University Press: London, 1985; pp 175-189. ⁽³⁹⁾ Sheldrick, G. M. SHELX-A System of Computer Programs for X-Ray Structure Determination; Cambridge University: Cambridge, England, 1976. ⁽⁴⁰⁾ International Tables for X-ray Crystallography; Kynoch Press: Birmingham, England, 1974; Vol. IV.