Synthesis of *N*-Cbz-Substituted β³-Amino Ketones Utilizing 4-Substituted 1,3-Oxazinan-6-ones

Brad E. Sleebs,^{a,b} Nghi H. Nguyen,^c Andrew B. Hughes*^c

- ^a The Walter and Eliza Hall Institute of Medical Research, Parkville 3010, Australia
- ^b Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
- ^c Department of Chemistry, La Trobe University, Victoria 3086, Australia
- Fax +61(3)94791266; E-mail: tahughes@optusnet.com.au

Received: 07.02.2013; Accepted after revision: 12.02.2013

Abstract: Stereoselective synthesis of *N*-Cbz-substituted β -amino ketones exploiting the versatile 1,3-oxazin-6-one scaffold is reported. The 4-substituted 1,3-oxazinan-6-ones were enolized and acylated diastereoselectively by addition of various acyl halides. Acidic decarboxylation was then employed to smoothly transform the 5-acylated products to chiral β -amino ketones. This methodology further highlights the utility of the 1,3-oxazinan-6-one as a scaffold to access valuable synthons that are used in the peptidomimetic field.

Key words: ketones, amino acids, acylation, ring opening, oxazinanones

β-Amino ketones are important synthetic precursors for many syntheses^{1,2} and also have demonstrated biological activity.³ There are numerous methods to gain access to βamino ketones, such as Michael addition of an amine surrogate to an α,β-unsaturated ketone,⁴ via a Mannich reaction,^{2,5} or by reduction of α,β-unsaturated ketones.⁶ However, many of these methods are limited in their use and a large proportion do not produce chiral β-amino ketones. To overcome the shortcomings of previous syntheses, a stereoselective synthesis of β-amino ketones was devised, starting from 1,3-oxazinan-6-ones.

1,3-Oxazinan-6-ones have previously been utilized to produce a variety of different β -amino acid derivatives.⁷⁻¹⁰ The versatility of the 1,3-oxazinan-6-one scaffold has been shown to produce *N*-methyl β^3 -amino acids, 2-hydroxy,⁹ 2-alkyl,⁹ and 2,2-dialkyl β^3 -amino acids,⁷ and recently $\beta^{2,3}$ -cyclic amino acids¹⁰ (Scheme 1). Ring opening of the 1,3-oxazinan-6-one has also been shown to produce a variety of carboxylic acids, esters, and amides.⁷⁻¹⁰ Herein the versatility of the 1,3-oxazinan-6-one is further exploited to produce chiral substituted β^3 -amino ketones.

It was proposed to produce the N-protected β^3 -amino ketones in two steps from the 1,3-oxazinan-6-one. Firstly, the 1,3-oxazinan-6-one would be enolized and then acylated by addition of an acyl halide. The 5-acylated oxazinanone would then be subjected to an acid-mediated ring opening followed by an in situ decarboxylation to produce the N-protected β -amino ketone (Scheme 2).

SYNLETT 2013, 24, 0823–0826 Advanced online publication: 14.03.2013 DOI: 10.1055/s-0032-1318345; Art ID: ST-2012-B0561-L © Georg Thieme Verlag Stuttgart · New York

Scheme 1 Transformations of the 1,3-oxazinan-6-one to produce stereopure β -amino acid derivatives

The starting 1,3-oxazinan-6-ones 1–4 were easily prepared in three steps from the parent N-protected α -amino acids via the Arndt–Eistert homologation to produce the corresponding β -amino acids. The β -amino acids were then cyclized using a previously described method^{7–10} to afford the N-protected 4-substituted 1,3-oxazinan-6-ones 1–4.

The 5-position of the 1,3-oxazinan-6-one was then acylated using enolate chemistry.¹¹ Enolization of the 1,3-oxazinan-6-ones 1-4 was performed using LiHMDS as the base at -78 °C. The acyl halide was then added at -78 °C. The reaction was maintained at -78 °C for three hours before warming to -50 °C and quenching with an ammonium chloride solution (Table 1).¹¹ A combination of the 4substituted 1,3-oxazinan-6-ones 1-4 and various acyl halides were subjected to these conditions, and the results are shown in Table 1. Moderate to good yields were obtained across a range of different substrates, however, the pivaloyl chloride used in entries 3, 6, and 9 consistently gave the lowest yields (30%, 43%, and 28%, respectively). Although the stereoselectivity of the 5-acylation reaction is not of relevance, because the stereocenter is removed in the next transformation to give the β -amino ketone, in all cases the *trans* isomer was produced with high diastereoselectivity (>95% dr, Table 1). The trans se-

Scheme 2 Proposed route to access β-amino ketones from 1,3-oxazinan-6-ones

lectivity was determined using coupling constants observed in the ¹H NMR spectra. The *trans* selectivity has also been observed with both 5-alkylations and 5-hydroxylations of numerous 4-substituted 1,3-oxazinan-6ones.^{7,9,10}

The 5-acylated 1,3-oxazinan-6-ones **5–14** were then transformed into the β -amino ketones under mild acidic conditions (Table 1).¹² The 5-acylated 1,3-oxazinan-6-ones **5–14** were dissolved in a mixture of THF and 2 M HCl, and the mixture was heated at 50 °C for 4–6 h. Under the acidic conditions the 1,3-oxazinan-6-one ring opens to produce the corresponding carboxylic acid. In situ decarboxylation of the β -keto carboxylic acid and hydrolysis of the iminium species then occurs to produce the β -amino ketone (Scheme 3). The substituted β ³-amino ketones **15–24** were all prepared in high yields (Table 1).^{12,13}

In an extension of this work, it was proposed that an *N*-methyl β -amino ketone could also be produced using acidic conditions. It has been established that reductive cleavage of the 1,3-oxazinan-6-one ring employing BF₃·OEt₂ or TFA and triethylsilane produces *N*-methyl β -amino acids.^{7–10} It was proposed to use the same acidic reductive cleavage conditions to transform the 5-acylated 1,3-oxazinan-6-one **5** into the *N*-methyl β -amino ketone **25** (Scheme 4). However, when this reaction was attempted the desired *N*-methyl β -amino ketone **25** was not obtained. The only product observed was the Cbz derivative of a secondary amine **27**. This was formed via an iminium species **26** which is intercepted by a hydride anion from triethylsilane. Possible uses of this unexpected reaction are now being investigated.

To further elaborate the methodology demonstrated here to produce β -amino ketones, a 5-methylated 1,3-oxazinan-6-one **28** would be 5-acylated and then subsequently subjected to acidic conditions to produce a disubstituted $\beta^{2,3}$ -amino ketone. The previously synthesized 5-methyl 1,3-oxazinan-6-one **28** was produced using enolate chem-

Scheme 3 Mechanism of the β -amino ketone formation

		$Cbz \xrightarrow{R^{1}}_{O} \xrightarrow{a}_{O} \xrightarrow{Cbz}_{O} \xrightarrow{R^{1}}_{O} \xrightarrow{B^{2}}_{O} \xrightarrow{b}_{O} \xrightarrow{Cbz}_{N} \xrightarrow{R^{1}}_{H} \xrightarrow{O}_{R^{2}}$				
		1–4	5–14	15–24		
Entry	Oxazinanone	\mathbb{R}^1	\mathbb{R}^2	Product (yield, %)	Product (yield, %)	ee (%)
1	1	<i>i</i> -Pr	Et	5 (80)	15 (91)	97
2	1	<i>i</i> -Pr	Ph	6 (71)	16 (89)	100
3	1	<i>i</i> -Pr	<i>t</i> -Bu	7 (30)	17 (70)	99
4	2	<i>n</i> -Bu	Et	8 (79)	18 (82)	97
5	2	<i>n</i> -Bu	Ph	9 (65)	19 (66)	99
6	2	<i>n</i> -Bu	<i>t</i> -Bu	10 (43)	20 (90)	100
7	3	s-Bu	Et	11 (79)	21 (63)	98
8	3	s-Bu	Ph	12 (78)	22 (75)	100
9	3	s-Bu	<i>t</i> -Bu	13 (28)	23 (87)	98
10	4	Bn	Et	14 (66)	24 (85)	100

 Table 1
 Acylation of the 1,3-Oxazinan-6-ones 1–4 and β-Amino Ketone Formation 15–24

^a Reaction conditions: (a) 1. LiHMDS, THF, -78 °C, 40 min; 2. R²COCl, -78 °C to -50 °C, 3 h; 3. NH₄Cl; (b) 2 M HCl, THF, 50 °C, 4-6 h.

Scheme 4 Attempted formation of the *N*-methyl β -amino ketone 25 and the mechanism of formation of the unexpected byproduct 27

istry and quenching with methyl triflate using established conditions.^{7,9,10} The 5-methyl 1,3-oxazinan-6-one **28** was then enolized and 5-acylated using benzoyl chloride to afford **29** in moderate yield (40%). The 5,5-disubstituted 1,3-oxazinan-6-one **29** was then subjected to acidic conditions to produce the β -amino ketone as a mixture of diastereoisomers **30** and **31** in a good yield (82%, Scheme 5). Although the stereochemistry was not the focus of this transformation, because the stereocenter is epimerized under the decarboxylation conditions, a sample of the *trans* isomer was obtained during purification. This transformation further demonstrates the capacity of this methodology to produce highly functionalized substituted $\beta^{2,3}$ -amino ketones.

In summary, the synthesis of chiral substituted β^3 -amino ketones **15–24** has been described starting from 4-substituted 1,3-oxazinan-6-ones **1–4**. The 1,3-oxazinan-6-ones **1–4** were acylated using enolate chemistry to afford the 5-acylated 1,3-oxazinan-6-ones **5–14** in moderate to high yields. The 5-acylated products **5–14** were then smoothly transformed into the corresponding β -amino ketones **15–24**, under acidic conditions. This methodology was further expanded to demonstrate that a disubstituted $\beta^{2,3}$ -amino ketone (**30** and **31**) could also be produced starting from the 5-methyl 4-substituted 1,3-oxazinan-6-one **28**.

Scheme 5 Acylation of the 1,3-oxazinan-6-one 28 and β-amino ketone (30 and 31) formation. *Reagents and conditions*: (a) 1. LiHMDS, THF, -78 °C, 40 min; 2. PhCOCl, -78 °C to -50 °C, 3 h; 3. NH₄Cl (40%); (b) 2 M HCl, THF, 50 °C, 4–6 h (82%).

The methodology described again highlights the versatility of the 1,3-oxazinan-6-one as a useful scaffold to access a diverse assortment of β -amino acids and β -amino ketones for use in the peptidomimetic field.

Acknowledgment

We thank La Trobe University for the provision of a postgraduate scholarship awarded to N.H.N. and the NHMRC (App. 1010326) for funding B.E.S.

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.

References and Notes

- (1) (a) Barluenga, J.; Olano, B.; Fustero, S. J. Org. Chem. 1985, 50, 4052. (b) Bosch, J.; Rubiralta, M.; Domingo, A.; Sistaré, J. J. Heterocycl. Chem. 1981, 18, 47. (c) Brough, P.; Pécaut, J.; Rassat, A.; Rey, P. Chem. Eur. J. 2006, 12, 5134. (d) Fisyuk, A. S.; Poendaev, N. V. Chem. Heterocycl. Compd. 2003, 39, 895. (e) Fisyuk, A. S.; Ryzhova, E. A.; Unkovskii, B. V. Chem. Heterocycl. Compd. 2001, 37, 597. (f) Hansen, C. P.; Jensen, A. A.; Balle, T.; Bitsch-Jensen, K.; Hassan, M. M.; Liljefors, T.; Fralund, B. Bioorg. Med. Chem. Lett. 2009, 19, 87. (g) Holzgrabe, U. Arch. Pharm. (Weinheim) 1988, 321, 767. (h) Keck, G. E.; Truong, A. P. Org. Lett. 2002, 4, 3131. (i) King, F. D. Tetrahedron Lett. 1983, 24, 3281. (j) Lanter, J. C.; Chen, H.; Zhang, X.; Sui, Z. Org. Lett. 2005, 7, 5905. (k) Richards, J. J.; Ballard, T. E.; Huigens, R. W.; Melander, C. ChemBioChem 2008, 9, 1267. (1) Son, P.-N.; Lai, J. T. J. Org. Chem. 1981, 46, 323. (m) Winter, A.; Risch, N. Synthesis 2003, 2667. (n) Yagi, T.; Aoyama, T.; Shioiri, T. Synlett 1997, 1063.
- (2) Webster, S. P.; Binnie, M.; McConnell, K. M. M.; Sooy, K.; Ward, P.; Greaney, M. F.; Vinter, A.; Pallin, T. D.; Dyke, H. J.; Gill, M. I. A.; Warner, I.; Seckl, J. R.; Walker, B. R. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 3265.
- (3) (a) Du, Y.; Li, Q.; Xiong, B.; Hui, X.; Wang, X.; Feng, Y.; Meng, T.; Hu, D.; Zhang, D.; Wang, M.; Shen, J. *Bioorg. Med. Chem.* 2010, *18*, 4255. (b) Makarova, N.; Boreko, E.; Moiseev, I.; Pavlova, N.; Zemtsova, M.; Nikolaeva, S.; Vladyko, G. *Pharm. Chem. J.* 2001, *35*, 480.

(c) Schönenberger, H.; Bastug, T.; Bindl, L.; Adelheid, A.; Adam, D.; Petter, A.; Zwez, W. *Pharm. Acta Helv.* **1969**, *44*, 691.

- (4) (a) Davies, S. G.; McCarthy, T. D. Synlett 1995, 7, 700.
 (b) Davis, F. A.; Yang, B. Org. Lett. 2003, 5, 5011.
 (c) Gomtsyan, A. Org. Lett. 1999, 2, 11. (d) Wabnitz, T. C.; Spencer, J. B. Tetrahedron Lett. 2002, 43, 3891.
- (5) (a) Cardova, A.; Notz, W.; Zhong, G.; Betancort, J. M.; Barbas, C. F. III. J. Am. Chem. Soc. 2002, 124, 1842. (b) Das, B.; Reddy, K. R.; Ramu, R.; Thirupathi, P.; Ravikanth, B. Synlett 2006, 1756. (c) Das, B.; Srilatha, M.; Veeranjaneyulu, B.; Rama, Rao. B. Synthesis 2010, 803. (d) Davis, F. A.; Yang, B.; Deng, J.; Zhang, J. ARKIVOC 2006, (viii), 120. (e) Eftekhari-Sis, B.; Abdollahifar, A.; Hashemi, M. M.; Zirak, M. Eur. J. Org. Chem. 2006, 5152. (f) Hartman, A. E.; Brophy, C. L.; Cupp, J. A.; Hodge, D. K.; Peelen, T. J. J. Org. Chem. 2009, 74, 3952. (g) Jia, X.-D.; Wang, X.-E.; Yang, C.-X.; Huo, C.-D.; Wang, W.-J.; Ren, Y.; Wang, X.-C. Org. Lett. 2010, 12, 732. (h) Josephsohn, N. S.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126, 3734. (i) List, B. J. Am. Chem. Soc. 2000, 122, 9336. (j) List, B.; Pojarliev, P.; Biller, W. T.; Martin, H. J. J. Am. Chem. Soc. 2002, 124, 827. (k) Lou, S.; Dai, P.; Schaus, S. E. J. Org. Chem. 2007, 72, 9998. (1) Lou, S.; Taoka, B. M.; Ting, A.; Schaus, S. E. J. Am. Chem. Soc. 2005, 127, 11256. (m) Mei, H.; Xiong, Y.; Han, J.; Pan, Y. Org. Biomol. Chem. 2010, 9, 1402. (n) Notz, W.; Sakthivel, K.; Bui, T.; Zhong, G.; Barbas, C. F. III. Tetrahedron Lett. 2001, 42, 199. (o) Ollevier, T.; Nadeau, E. J. Org. Chem. 2004, 69, 9292. (p) Ranu, B. C.; Samanta, S.; Guchhait, S. K. Tetrahedron 2002, 58, 983. (q) Schunk, S.; Enders, D. Org. Lett. 2001, 3, 3177. (r) Sieber, J. D.; Morken, J. P. J. Am. Chem. Soc. 2005, 128, 74. (s) Syu, S.-e.; Lee, Y.-T.; Jang, Y.-J.; Lin, W. J. Org. Chem. 2011, 76, 2888. (t) Terada, M.; Machioka, K.; Sorimachi, K. Angew. Chem. Int. Ed. 2006, 45, 2254. (u) Yang, J. W.; Chandler, C.; Stadler, M.; Kampen, D.; List, B. Nature (London) 2008, 452, 453. (v) Yang, J.-W.; Stadler, M.; List, B. Angew. Chem. Int. Ed. 2007, 46, 609.
- (6) Geng, H.; Huang, K.; Sun, T.; Li, W.; Zhang, X.; Zhou, L.; Wu, W.; Zhang, X. J. Org. Chem. 2011, 76, 332.
- (7) Nguyen, N. H.; Sleebs, B. E.; Hughes, A. B. *Tetrahedron* **2012**, *68*, 4745.
- (8) (a) Sleebs, B. E.; Hughes, A. B. *Helv. Chim. Acta* 2006, *89*, 2611. (b) Sleebs, B. E.; Hughes, A. B. *Aust. J. Chem.* 2006, *58*, 778.
- (9) Sleebs, B. E.; Hughes, A. B. J. Org. Chem. 2007, 72, 3340.
- (10) Sleebs, B. E.; Nguyen, N. H.; Hughes, A. B. *Tetrahedron* **2013**, *69*, in press.

(11) General Procedure 1

5-Acylation of 1,3-Oxazinan-6-ones

A solution of the 1,3-oxazinan-6-one **1–4** (0.1 M in dry freshly distilled THF) was cooled to -78 °C under an argon atmosphere. Then LiHMDS (1.1 equiv of a 1.0 M solution in THF) was added dropwise, and the solution was left to stir at -78 °C for 40 min. The acylating agent (3.0 equiv) was then

added dropwise and stirring was continued for 3 h at -78 °C. The solution was then allowed to warm to -50 °C, and the reaction was then quenched with sat. NH₄Cl solution (5 mL). The solution was diluted with EtOAc (20 mL) and washed with H₂O (20 mL). The organic layer was dried (MgSO₄) and concentrated in vacuo to give an oil. The oil was subjected to flash column chromatography, eluting with 5–30% EtOAc–hexane.

Data for (4*S*,5*R*)-*N*-Benzyloxycarbonyl-4-isopropyl-5propionyl-1,3-oxazinan-6-one (5)

General Procedure 1 was followed for the acylation of oxazinanone 1 (63 mg, 0.23 mmol) with propionyl chloride (59.8 µL, 0.68 mmol), to afford the desired 5-substituted 1,3oxazinan-6-one 5 as a clear oil (crystallized on standing; 60 mg, 80% yield); mp 82–84 °C; $R_f = 0.23$ (20% EtOAc– hexane); $[\alpha]_D^{25}$ +116 (*c* 2.17, MeOH). ¹H NMR (300 MHz, $CDCl_3$): $\delta = 7.33$ (s, 5 H), 5.93 (d, 1 H, J = 9.9 Hz), 5.17 (s, 2 H), 4.93 (d, 1 H, J = 9.9 Hz), 4.59 (t, 1 H, J = 7.2 Hz), 3.73 (d, 1 H, J = 7.2 Hz), 2.84-2.73 (m, 1 H), 2.58-2.47 (m, 1 H),1.88-1.77 (m, 1 H), 1.09 (t, 3 H, J = 7.2 Hz), 0.89 (d, 3 H, J = 7.2 Hz), 0.85 (d, 3 H, J = 7.2 Hz). ¹³C NMR (75 MHz, CDCl₃): δ = 202.7 167.3, 154.5, 134.9, 128.3, 128.1, 127.8, 72.9, 68.2, 55.9, 55.1, 36.5, 31.0, 18.3, 18.1, 7.2. IR (film): $v_{max} = 2967, 2940, 1748, 1717, 1458, 1412, 1258, 1123, 979$ cm⁻¹. HRMS (ESI⁻): m/z calcd for C₁₈H₂₃NO₅ [M – H]⁻: 332.1503; found: 332.1496.

(12) General Procedure 2 Formation of the β³-Amino Ketones

The oxazinanone **15–24** was dissolved in a mixture of THF–2 M HCl (1:1, 0.013 M solution), and the reaction mixture was gently heated to 50 °C for 4–6 h. The THF was then removed under reduced pressure. The aqueous solution was taken up EtOAc and washed with H_2O (3 × 10 mL) followed by brine (1 × 10 mL). The organic layer was dried (MgSO₄) and evaporated in vacuo to give an oil. The oil was subjected to flash column chromatography, eluting with 5–20% EtOAc–hexane.

(13) Data for (5*R*)-(*N*-Benzyloxylcarbonyl-5-amino)-6methyl-heptan-2-one (15)

General Procedure 2 was followed for the hydrolysis of the 1,3-oxazinan-6-one 5 (31 mg, 0.09 mmol), and afforded the β -amino ketone 15 as a white solid (24 mg, 92% yield); mp 75–77 °C; $R_f = 0.50$ (30% EtOAc–hexane); $[\alpha]_D^{25}$ –3.6 (c 1.09, MeOH). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.32-7.27$ (m, 5 H), 5.14 (d, 1 H, J = 8.9 Hz), 5.06 (s, 2 H), 3.83-3.76 (m, 1 H), 2.61 (br d, 2 H, J = 5.7 Hz), 2.47–2.33 (m, 2 H), 1.89–1.80 (m, 1 H), 1.00 (t, 3 H, J = 7.2 Hz), 0.89 (d, 3 H, J = 4.2 Hz), 0.87 (d, 3 H, J = 4.5 Hz). ¹³C NMR (75 MHz, $CDCl_3$): $\delta = 210.0, 155.7, 136.3, 128.1, 127.6, 127.5, 66.2,$ 53.2, 43.9, 35.8, 31.2, 19.1, 18.2, 7.3. IR (film): v_{max} = 3325, 2940, 2878, 1709, 1682, 2539, 1454, 1416, 1308. HRMS (ESI⁺): m/z calcd for C₁₆H₂₃NO₃ [M + H]⁺: 278.1751; found: 278.1756. HPLC [Chiralpak AD-H, PE-2-PrOH (90:10), 25 °C, 254 nm]: $t_{\rm R}$ (major) = 7.1 min; $t_{\rm R}$ (minor) = 6.1 min, 97% ee.

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.