
A NEW AND FACILE STEREOSELECTIVE SYNTHESIS OF CIS-4a-ARYL-1,2,3,4,4a,5,6,8a-OCTAHYDROISOQUINOLINE DERIVATIVES

Shinzo KANO, Tsutomu YOKOMATSU, Yoko YUASA, and Shiroshi SHIBUYA Tokyo College of Pharmacy, 1432-1 Horinouchi, Hachioji, Tokyo 192-03

Cis-1,2,3,4,4a,5,6,8a-octahydro-2-methyl-4a-phenylisoquinolin-3-one was obtained by cyclization of the acyliminium ion intermediate, derived from the corresponding amide. Reduction of this cyclization product with LiAlH₄ in THF afforded cis-1,2,3,4,4a,5,6,8a-octahydro-2-methyl-4aphenylisoquinoline. In a similar way, the octahydro-4a-(2-methoxyphenyl)isoquinolin-3-one was also prepared from the corresponding amide.

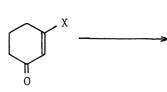
Although many synthetic strategies for morphine-based substructural analogs have been reported,¹⁻⁶⁾ the new structural variants in this field are still required in the hope of finding significant analgesics with fewer undesirable side effects. We investigated a new and facile synthesis of 4a-arylisoquinolin-3-ones such as 2-4, which would be considerably difficult to prepare, though they should be treated as key structural variants of morphine molecule.⁵⁾ For the synthesis of these compounds, we examined a cyclization of acyliminium ion intermediates (<u>1</u>), which might exhibit high stereoselectivity.⁷⁾ The results of our studies are described in this paper.

The amide (<u>10</u>), the key intermediate for the formation of the acyliminium ion intermediate, was prepared as follows. Phenylation of ethoxycyclohexenone $(\underline{5})^{8}$ with phenyllithium by the method of Keck,⁹ followed by hydrolysis of the reaction

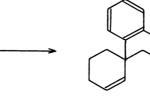
mixture with 10 % hydrochloric acid yielded the phenylcyclohexenone (6). Reduction of <u>6</u> with NaBH₄ in EtOH at 0 °C gave the enol (<u>7</u>). Claisen rearrangement^{10,11}) of $\underline{7}$ was effected by the use of triethyl orthoacetate (4 mol. equiv.) at 145 °C for 14 h in the presence of phenol as a catalyst to give the ester $(\underline{8})$.¹²⁾ Hydrolysis of <u>8</u> with 10 % EtOH-NaOH gave the acid $(9)^{12}$ in 55 % yield from 5, mp 88-90 °C. The acid (9) was easily converted to the amide (10) [1.2 equiv. SOC1₂, benzene, reflux, 2 h, then CH_3NH_2 ·HCl, Na_2CO_3 , H_2O , 0 °C \longrightarrow room temperature, 10 h], mp 113-115 °C; MS m/e 229 (M⁺); ¹H NMR (CDC1₃) δ 2.56 (2H, s, CH₂CON), 2.60 (3H, s, NCH₃), and 6.04 (2H, s, olefinic H). Treatment of 10 with parafromaldehyde (5 mol. equiv.) in the presence of p-toluenesulfonic acid (1 mol. equiv.) in chloroform under reflux for 14 h resulted in formation of cis-1,2,3,4,4a,5,6,8a-octahydro-2-methyl-4a-phenylisoquinolin-3-one (11) in 52 % yield, mp 120-122 °C; MS m/e 241 (M^+) ; ¹H NMR (CDCl₃) δ 2.76 (3H, s, NCH₃), and 5.74 (2H, braod s, olefinic H). In this reaction, the 1,2,3,4,4a,5,6,8-octahydro type compound (4, R=H) was not observed. Formation of the alternative expected product (2; R=H, Nu=p-TosO)¹³ would be retarded by the steric hindrance of phenyl group. It can be considered that formation of the cis-octahydro-4a-phenylisoquinolin-3-one is kinetically more favorable than that of the trans-isomer. In fact, the stereochemistry of the ringjuncture of 11 was determined as cis by the subsequent transformation. Hydrogenation of <u>11</u> over Pd-C catalyst gave the decahydro-4a-phenylisoquinolin-3-one $(\underline{12})$ as an oil; MS m/e 243 (M^+); ¹H NMR (CDCl₃) δ 2.75 (3H, s, NCH₃). Reduction of <u>12</u> with LiAlH₄ in THF yielded the cis-decahydro-4a-phenylisoquinoline (13), 5, 14, 15) the spectral and physical data of which were identical with those in the literature in all respects, picrate, mp 142-144 °C (lit.¹⁴⁾ 144-146 °C). Furthermore, reduction of 11 with LiAlH₄ gave the corresponding octahydro-2-methyl-4a-phenylisoquinoline (14) as an oil; MS m/e 227 (M^+) ; ¹H NMR (CDCl₃) & 2.26 (3H, s, NCH₃), and 5.74 (2H, broad s, olefinic H).

The octahydro-4a-(2-methoxyphenyl)isoquinolin-3-one (20) was also prepared by the method as above. 2-Methoxyphenylation of 5 with 2-methoxyphenyllithium obtained from 2-bromoanisole,⁹⁾ followed by hydrolysis of the reaction mixture afforded the enone (<u>15</u>), which was led to the acid (<u>18</u>)¹⁶⁾ in 53 % yield from <u>5</u> through <u>16</u> and <u>17</u>.¹²⁾ The amide (<u>19</u>),¹⁷⁾ obtained from <u>18</u> was treated with parafromaldehyde (5 mol. equiv.) in chloroform in the presence of p-toluenesulfonic acid (1 mol. equiv.) to give <u>20</u> in 45 % yield, mp 143-145 °C; MS m/e 271 (M⁺); ¹H NMR (CDCl₃) δ 2.82 (3H, s, NCH₃), 3.82 (3H, s, OCH₃), and 5.71 (2H, s, olefinic

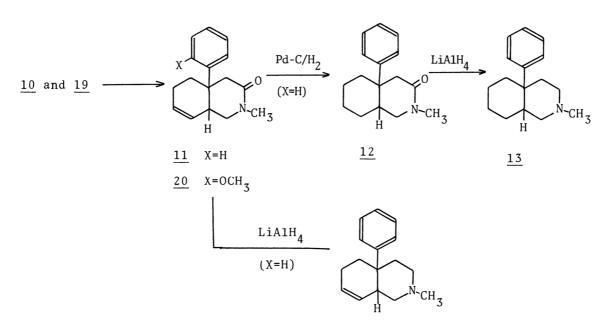
Chemistry Letters, 1982


H). The yield of $\underline{20}$ increased to 50 % by using 1,2-dichloroethane instead of chloroform. Upon heating $\underline{10}$ and $\underline{19}$ with paraformaldehyde (5 mol. equiv.) in formic acid at 60 °C, the same results were obtained as above and yields of the corresponding cyclization products were not improved. Lewis acid such as $SnCl_4$ and $ZnCl_2$ in a variety of solvents were not effective in this cyclization reaction.

x


ÒН

7


X=H

- 5 X=OEt
- $\underline{6}$ X=C₆H₅ $\underline{16}$ X=OCH₃
- $\frac{15}{15}$ X=2-(CH₃0)-C₆H₄

- 8 X=H, Y=COOEt
- <u>9</u> X=H, Y=COOH
- <u>10</u> X=H, Y=CONHCH₃
- $\underline{17}$ X=OCH₃, Y=COOEt
- <u>18</u> X=OCH₃, Y=COOH
- <u>19</u> $X = OCH_3$, $Y = CONHCH_3$

References

- 1) M. R. Johnson and G. M. Michne, In "Medicinal Chemistry, 4th Ed'; ed. by
- M. E. Wolff; Wiley Interscience: New York, 1981, Part III, p 699.
- 2) D. C. Palmer and M. J. Strauss, Chem. Rev., 77, 1 (1977).
- 3) W. H. Moos, D. G. Richard, and H. Rapoport, J. Org. Chem., <u>46</u>, 5064 (1981).
- 4) E. Ciganek, J. Am. Chem. Soc., <u>103</u>, 6261 (1981).
- 5) D. A. Evans, C. H. Mitsch, R. C. Thomas, D. M. Zimmerman, and R. L. Robey, J. Am. Chem. Soc, 102, 5955 (1980).
- 6) D. D. Weller, R. D. Gless, and H. Rapoport, J. Org. Chem., <u>42</u>, 1485 (1977).
- 7) (a) W. N. Speckamp, In "Stereoselective Synthesis of Natural Products", ed.
 by W. Bartman and E. Winterfeld; Excepta Medica: Amsterdam-Oxford, 1979, p
 50-61. (b) D. J. Hart and K. Kanai, J. Org. Chem., <u>47</u>, 1555 (1982).
- 8) W. F. Gannon and H. O. House, Org. Synth., <u>40</u>, 41 (1960).
- 9) G. E. Keck and R. R. Webb, II, J. Am. Chem. Soc., 103, 3173 (1981).
- 10) W. S. Johnson, L. Werthermann, W. R, Bartlett, T. J. Broskson, T.-T. Li,
 D. J. Faukner, and M. R. Perterson, J. Am. Chem. Soc., <u>92</u>, 741 (1970).
- 11) F. E. Ziegler, Acc. Chem. Res., 10, 227 (1977) and references cited therein.
- 12) The compounds $(\underline{6})$ -(8) and $(\underline{15})$ -($\underline{17}$) were used for the next reaction without purification.
- 13) Although the formation of a trace amount of 2 (R=H, Nu=p-TosO) was detected by ¹H NMR analysis of the crude product, it was not obtained in a pure form.
- 14) N. Finch, L. Blanchard, R. T. Puckett, and L. H. Werner, J. Org. Chem., 39, 1118 (1974).
- 15) D. D. Weller and H. Rapoport, J. Am. Chem. Soc., 98, 6650 (1976).
- 16) mp 63-65 °C; MS m/e 246 (M⁺).
- 17) mp 145-147 °C; MS m/e 259 (M⁺); ¹H NMR (CDC1₃) δ 2.54 (3H, d, J=4.5 Hz, NCH₃),
 2.55, 3.12 (2H, each d, J=13 Hz, CH₂CO), 3.90 (3H, s, OCH₃), 5.80-6.25 (2H, m olefinic H).

(Received September 16, 1982)