The following are other examples that show the sensitivity of photostimulated S_{RN}1 reactions to the nature of the solvent and counterion. The reaction between 2-chloro-2-nitropropane and ethyl sodioacetylacetate in DMF yields ethyl 2-isopropylideneacetylacetate, but no reaction takes place with Li⁺ in THF; potassium diethyl phosphite and 2-(p-tolylsulfonyl)-2-nitropropane in THF yield diethyl 2-nitroisopropylphosphate,¹² but no reaction occurs with Li⁺ in THF; potassium diethyl thiophosphite reacts with 2-(p-tolylsulfonyl)-2-nitropropane in Me₂SO to give diethyl 2-nitroisopropylthiophosphonate, but with Li⁺ in THF, the starting sulfone is recovered.

(12) Russell, G. A.; Hershberger, J. J. Chem. Soc., Chem. Commun. 1980, 216

(13) Postdoctoral Fellow of the Consejo Superior de Investigaciones Científicas de Espana, 1979-81.

Glen A. Russell, Francisco Ros,¹³ Boguslaw Mudryk

Department of Chemistry Iowa State University Gilman Hall, Ames, Iowa 50011 Received June 30, 1980

Substitution Reactions of Vinylmercurials by a Free-Radical Chain Mechanism¹

Sir:

We have found that 1-alkenylmercury halides readily undergo photostimulated free-radical chain substitution reactions 1-3 (X = Cl, Br, OAc). In all cases the reactions are completely inhibited

RCH==CHHgX + R'Y-YR'
$$\xrightarrow{n\nu}$$

RCH==CHYR' + XHgYR' (1)
Y = S, R' = alkyl or aryl;
Y = Se, Te, R' = phenyl
RCH==CHHgX + Z-Q $\xrightarrow{h\nu}$ RCH==CHZ + XHgQ (2)

 $RCH=CHHgX + Z-Q \longrightarrow RCH=CHZ + XHgQ$

$$Z = PhSO_2, Q = Cl; Z = Me_2CH, Q = I$$

 $RCH = CHHgX + A^{-} \xrightarrow{h\nu} RCH = CHA + Hg^{0} + X^{-}$ (3) A- =

 $(RO)_2PO^-$, PhP(OBu)O⁻, AlkSO₂^{-,2} ArSO₂^{-,2} AlkS⁻, ArS⁻

by 5-10 mol % of di-tert-butyl nitroxide or galvinoxyl and fail to proceed significantly in the dark.

Reactions 1 and 2 or 3 with $A^- = RS^-$ clearly proceed by a free-radical addition-elimination mechanism (Scheme I).

In reaction 2 a vinyl radical intermediate is clearly excluded by the complete absence of the vinyl choride when the reactant is PhSO₂Cl and only traces of the vinyl iodide when the reactant is Me₂CHI. A vinyl radical would attack these substrates to give halogen atom transfer. Furthermore, reactions 1, 2, or 3 with A-= RSO_2^- or RS^- fail to occur with phenyl- or benzylmercurials. This excludes reaction 1 occurring by the S_H^2 attack of a carbon-centered radical on R'YYR' or reaction 3 occurring by the S_{RN}^{1} mechanism.² Moreover, reaction 1 with Y = S will occur in PhH in the presence of 1 equiv of 2,6-di-tert-butylphenol to yield the vinyl sulfide in nearly quantitative yield with but a slight rate retardation.

In reaction 3 with $A^- = PhS^-$ the reaction is inhibited by an excess of the mercaptide ion.³ However, the reaction is not RCH=CHHgSR' $\xrightarrow{h\nu}$ RCH=CHSR' + Hg⁰ (4)

mercaptide ion inhibits the reaction while the free mercaptan has no effect on the rate or product. The decomposition of RCH= CHHgSR' follows Scheme I, probably with the stepwise expulsion of Hg⁰ from the intermediate β -mercurio radical.^{3,4}

Me₂SO) decomposes cleanly according to reaction 4; again the

Table I gives some typical yields observed in these reactions. The processes are not completely stereoselective, which is consistent with Scheme I. With R = tert-butyl only the E products have been observed (E/Z > 20.1), but with smaller substituents (R = Ph, n-Pr) mixtures of the E and Z isomers are formed (Table I).

In an analogous series of reactions divinylmercurials undergo a photostimulated reaction with aryl disulfides (but not with primary alkyl disulfides) to form the vinyl sulfides (reaction 5).⁵

$$[(Ph)_{2}C = CH]_{2}Hg + PhSSPh \xrightarrow{h\nu, 3 h} 2(Ph)_{2}C = CHSPh + Hg^{0} (5)$$

At 0 °C in PhH-hexane solution the bis(vinyl)mecurial does not undergo significant electrophilic cleavage by PhSH, a dark reaction which occurs readily in Me₂SO or PhH at 25 °C. At 0 °C in PhH-hexane the presence of PhSH had no effect on the rate of reaction 5 and the vinyl sulfide was formed in quantitative yield. The reaction is, however, strongly inhibited by 5 mol % of galvinoxyl. We thus conclude that reaction 5 also does not involve intermediate vinyl radicals and chain propagation occurs by Scheme I followed by reactions 6 and 4. The failure of alkyl

 $(Ph)_2C = CHHg$ (from Scheme I) + PhSSPh \rightarrow $(Ph)_2C = CHgSPh + PhS \cdot (6)$

(5) A number of thermal substitution reactions of $(CH_2=CH)_2Hg$ have been reported [Foster, D. J.; Tobler, E. J. Am. Chem. Soc. 1961, 83, 851; J. Org. Chem. 1962, 27, 834; U.S. Patents 3 087 952, April 30, 1963; Feb 15, 1966; 3 090 814, May 21, 1963; 3 153 074, Dec 23, 1963. Tobler, E.; Foster, D. J. Z. Naturforsch. 1962, 176, 135, 136] which follow the stoichiometry

$$(CH_2 = CH)_2Hg + HX \xrightarrow{a} CH_2 = CH_2 + CH_2 = CHX + Hg^0$$

where X = SR, $SC(==0)CH_3$, OPh, O_2CR , $O_2SPhMe-p$. This work has been where X = SR, $SC(=O)CH_3$, OPn, O_2CR , $O_2SPnMeP_2$. This work has been extended to include $X^- = (EtO)_2P(=O)O^-$, $MeP(=O)(OR)O^-$, $(RO)_2P(=S)S^-$ [Gololobov, Y. G.; Domitrieva, T. F.; Suborovskii, L. Z. Probl. Organ. Sintoza, Akad. Nauk, SSSR, Otd. Obshsh. Tekhn. Khim **1965**, 314; Chem. Abstr. **1966**, 64, 6683h] and at 180 °C in the presence of hydroquinone, $C_nF_{2n+1}CO_2^-$ and $(CF_3)_2C=NO^-$ [Sterlin, R. N.; Euplov, B. N.; Knunyantz, I. L. Zh. Vses. Khim. Obshchest. **1967**, 12, 591; Chem. Abstr. **1968**, 63, 4970661. It appress likely that some of these processes may proceed by a 49706c]. It appears likely that some of these processes may proceed by a free-radical decomposition of the intermediate CH_2 =CHHgX formed by electrophilic cleavage of divinylmercury. In the present work CH2=CHHgCl electrophilic cleavage of divinyImercury. In the present work CH₂=CHHgCl failed to give a photostimulated substitution reaction with anions such as (EtO)₂PO⁻ or RSO₂⁻, but led instead to polymeric products. Foster and Tobler also report the thermal decompositions of CH₂=CHHgSPh, CH₂= CHHgO₂CR, R'CH=CR'HgO₂CR, and CH₂=CHHgSCN to CH₂=CHSPH, CH₂= CH₂=CHOC(=O)CH₃, CH₂=CHOC(=O)Ph, R'CH=CR'O₂CCH₃, CH₂=CHSCN, and CH₂=CHNCS at 100-200 °C. At 35 °C, (*E*)-Me₃CCH=CHHgOAc does not undergo decomposition to yield the vinyl acetate even with prolonged irradiation at 350 nm. acetate even with prolonged irradiation at 350 nm.

 ⁽¹⁾ Electron Transfer Reactions. 24. This work was supported by Grant CHE-7823866 from the National Science Foundation.
 (2) Hershberger, J.; Russell, G. A. Synthesis 1980, 475.

⁽³⁾ The inhibition by the thiolate anion may involve the trapping of the chain-carrying species HgSR (Scheme I). Trapping of RS seems to be eliminated by the observation that PhS⁻ is not an inhibitor in reaction 5 where the intermediate Hg species can react rapidly with PhSSPh.

⁽⁴⁾ The mercury substituent probably stabilizes the intermediate β -mercurio radical, leading to regioselectivity in the first step of Scheme I. It has been reported that a mercury substituent greatly activates β -hydrogen atoms toward attack by the trichloromethyl radical [Kochi, J. K.; Nugent, W. A. J. Am. Chem. Soc. 1976, 98, 5406], although no dramatic activation has been noted in hydrogen abstraction by the less selective and less electrophilic phenyl radical in attack upon diethylmercury [unpublished results with J. D. Hunt].

Table I. Photostimulated Reactions of Vinylmercurials

vinylmercurial	reactant	conditions ^a	products	% yield ^b
(E)-Me ₃ CCH=CHHgCl	n-BuSSBu-n	PhH, 17 h	(E)-Me ₃ CCH=CHSBu-n	100
(E)-Me ₃ CCH=CHHgCl	PhSSPh	PhH, 6 h	(E)-Me ₃ CCH=CHSPh	100
(E)-Me ₃ CCH=CHHgCl	PhSeSePh	PhH, 2 h	(E)-Me ₃ CCH=CHSePh	95
(E)-Me ₃ CCH=CHHgCl	PhTeTePh	PhH, 18 h	(E)-Me ₃ CCH=CHTePh	89
(E)-Me ₃ CCH=CHHgCl	PhSO ₂ Cl	PhH, 4 h ^c	(E)-Me ₃ CCH=CHSO ₂ Ph	84
(E)-Me ₃ CCH=CHHgCl	(EtO), POK	Me ₂ SO, 29 h	(E)-Me ₃ CCH=CHP(O)(OEt) ₂	76
(E)-Me ₃ CCH=CHHgCl	PhP(OBu)OK	Me ₂ SO, 3.5 h	(E)-Me ₃ CCH=CHP(O)(OBu)Ph	84
(E)-Me ₃ CCH=CHHgCl	p-MePhSO ₂ Na	t-BuOH/H ₂ O, 31 h	(E)-Me ₃ CCH=CHSO ₂ PhMe-p	81 <i>d</i>
(E)-Me ₃ CCH=CHHgCl	n-PrSO ₂ Na	Me_2SO/t -BuOH/H ₂ O, 30 h	(E)-Me ₃ CCH=CHSO ₂ Pr-n	75^d
(E)-Me ₃ CCH=CHHgCl	PhSH	PhH, NaHCO ₃ , 17 h	(E)-Me ₃ CCH=CHSPh	99
(E)-Me ₃ CCH=CHHgCl	t-BuSH	PhH, NaHCO ₃ , 15 h	(E)-Me ₃ CCH=CHSCMe ₃	100
(E)-Me ₃ CCH=CHHgCl	PhCH ₂ SH	PhH, NaHCO ₃ , 5 h	(E)-Me ₃ CCH=CHSCH ₂ Ph	64
(Z)-HOCH ₂ C(Cl)=CHHgCl	PhSH	PhH, NaHCO ₃ , 5.25 h	$HOCH_2C(Cl) = CHSPh$	61
CH ₂ =CHHgCl	PhSH	PhH, NaHCO ₃ , 3 h	$CH_2 = CHSPh$	100
(E)-EtC(OAc)=C(Et)HgCl	PhSH	PhH, NaHCO₃, 11 h	EtC(OAc) = C(Et)SPh	92
(E)-Me ₃ CCH=CHHgOAc	PhSH	PhH, 17 h	(E)-Me ₃ CCH=CHSPh	100
(E)-Me ₃ CCH=CHHgOAc	PhCH₂ SH	PhH, 18 h	(E)-Me ₃ CCH=CHSCH ₂ Ph	97
(Ph) ₂ CH=CHHgBr	MeSSMe	PhH, 8 h	$(Ph)_2CH=CHSMe$	100
$(Ph)_2CH = CHHgBr$	<i>p</i> -MePhSO₂Na	DMSO, 40 h	(Ph) ₂ CH=CHSO ₂ PhMe-p	61
(Ph) ₂ CH=CHHgBr	Me ₂ CHI	PhH, 2 h ^c	$(Ph)_2CH=CHCH(Me)_2$	50
(E)-Me ₃ CCH=CHHgSPh		PhH, 3 h	(E)-Me ₃ CCH=CHSPh	99
(E)-Me ₃ CCH=CHHgSBu-n		PhH, 6 h	(E)-Me ₃ CCH=CHSBu-n	100
$(Ph)_2C = CHHgSPh$		PhH, 15 h	(Ph) ₂ C=CHSPh	100
$(Ph)_2 C = C(CH_3)HgSPh$		PhH, 6 h	$(Ph)_2C=C(CH_3)SPh$	100
(E)-PhCH=CHHgSPh		PhH, 6 h	PhCH=CHSPh, $E:Z = 10:1$	100
(E)-n-PrCH=CHHgSPh		PhH, 4 h	n-PrCH=CHSPh, $E:Z = 1.2:1$	100
(E)- <i>n</i> -PrCH=CHHgCl	(EtO) ₂ POK	Me_2SO , 11 h	n-PrCH=CHP(=O)(OEt) ₂ , $E:Z = 10:1$	56
(E)-n-PrCH=CHHgCl	p-MePhSO ₂ Na	Me_2SO/t -BuOH/H ₂ O, 22 h	n-PrCH=CHSO ₂ PhMe- p , $E:Z = 6:1$	71 ^d
(E)-PhCH=CHHgCl	p-MePhSO ₂ Na	Me_2SO/t -BuOH, 19 h	(E)-PhCH=CHSO ₂ PhMe- $p, E:Z > 20:1$	81 <i>d</i>
(E)-PhCH=CHHgCl	n-BuSH	PhH, NaHCO ₃ , 3 h	(E)-PhCH=CHSBu-n	100
(E)-PhCH=CHHgCl	PhSeSePh	PhH, 2h	(E)-PhCH=CHSePh	90
$CH_2 = CHHgCl$	PhSeSePh	PhH, 2h	$CH_2 = CHSePh$	91
$CH_2 = CHSn(Bu-n)_3$	PhSSPh	PhH, 4h	CH ₂ =CHSPh	~100

^a Reactants were irradiated with a 275-W sunlamp approximately 6 in. from the Pyrex reaction flask. The sunlamp maintained a temperature of approximately 35-45 °C. The mercurials (3 mmol) in 10-50 mL of solvent were reacted with a stoichiometric amount of the disulfide or PhSO₂Cl, a 10-20% excess of the anions or free thiols, and a 10-fold excess of Me₂CHI. The exclusion of molecular oxygen is essential. ^b Appropriate ¹H NMR, IR, and high-resolution mass spectra were obtained for all products. Satisfactory elemental analyses were obtained for all new compounds except for Me₃CCH=CHTePh (oxidatively reactive), HOCH₂C(Cl)=CHSPh (unstable), and *n*-PrCH=CHP(O)·(OEt)₂, for which an NMR yield is reported. The only previously reported 1-alkenylmercury mercaptide is CH₂=CHHgSR.⁵ ^c Irradiated in Pyrex in a RPR-100 Rayonet reactor at 350 nm. ^d Previously reported in ref 2.

Scheme I

 $RCH = CHHgX + R'Y \cdot (or Z \cdot or A \cdot) \longrightarrow RCH - C - YR' (Z or A) \longrightarrow HgX$ RCH = CH - YR' (Z or A) + HgX $HgX + R'Y - YR' - XHgYR' + R'Y \cdot (reaction 1)$

or

or

$$HgX + A^- \longrightarrow Hg^\circ + X^- + A^\circ$$
 (reaction 3,

or

disulfides to participate in reaction 5, although they react readily in reaction 1, may indicate that in the presence of the alkyl disulfide the vinylmercury intermediate ((Ph)₂C=CHHg) at least partially decomposes to yield vinyl radicals which do not lead to chain propagation, possibly because of abstraction of the α -hydrogen atoms of the disulfide.

The reaction scheme attributes a surprisingly high reactivity to the species HgX which may be much more reactive than Hg₂Cl₂ (as, for example, R₃Sn and R₃SnSnR₃). Thus, in DMF Hg₂Cl₂ is disproportionated to Hg⁰ and HgCl₂ but not otherwise reduced by anions such as PhSO₂⁻. Furthermore, Hg₂Cl₂ undergoes no reaction with PhSO₂Cl in PhH (heterogeneous).

Preliminary results indicate that reactions 1-3 or 5 may occur with other 1-alkenylmetals. Thus, we have found that a photostimulated free-radical chain reaction occurs between (*n*- Bu)₃SnCH=CH₂ and PhSSPh to afford CH₂=CHSPh in essentially a quantitative yield.

Glen A. Russell,* James Hershberger

Department of Chemistry, Iowa State University Ames, Iowa 50011 Received July 25, 1980

Reduction of CO₂ to CO by Transition-Metal Dianions¹

Sir:

We wish to report an unusual CO_2 reduction using electron transfer from transition-metal dianions, in which the oxygen sink is an alkali metal carbonate (eq 1). Since alkali metals provide the ultimate reducing power in the preparations of the transition-metal dianions and the carbon monoxide formed can be photochemically released from the product carbonyl complexes, the overall reaction can be summarized as in eq 2.

$$M_{2}[M'(CO)_{n}] + 2CO_{2} \rightarrow M_{2}CO_{3} + [M'(CO)_{n+1}] \quad (1)$$

$$n = 5, M = Na \text{ or Li, } M' = W$$

$$n = 4, M = Na, M' = Ru \text{ or Fe}$$

$$2M + 2CO_{2} \rightarrow M_{2}CO_{3} + CO \quad (2)$$

Treatment of a solution of $Li_2[W(CO)_5]$ in tetrahydrofuran (thf)² with gaseous CO₂ at -78 °C resulted in immediate bleaching

⁽¹⁾ This paper is dedicated to the memory of Professor R. B. Woodward.