390 Communications SYNTHESIS

nucleophilic attack at C-1 and C-3 and for electrophilic attack at the carbonyl O-atom and at C-2. We have previously described the reaction of 1 with sodium borohydride or lithium aluminum hydride, which are nucleophiles; these reactions lead to the smooth reductive elimination of the S-function to afford 1-alkenyl ketones (3)².

We have now investigated the reactions of ketones 1 and 2 with amines (5) as nucleophiles. Relatively few data have hitherto been reported on the reaction of compounds 1 with amines¹. We describe here the substitution reactions of 2-alkylthio-1-alkenyl ketones (1) and 2-alkylsulfinyl-1-alkenyl ketones (2) with amines (5) which provide a synthesis of 2-amino-1-alkenyl ketones (4) under mild conditions. Although several syntheses of compounds 4 have hitherto been described, only little attention has been paid to the reaction of compounds 1 or 2 with amines^{3,4}. Compounds 4 are usually prepared from 2-chloro-1-alkenyl ketones and amines; however, the synthesis of the 2-chloro-1-alkenyl ketones is difficult, in particular, when a further substituent is at C-3, and these compounds are generally unstable⁴.

Treatment of 2-alkylthio-1-alkenyl ketones (1a-d) with primary or secondary amines (5) in benzene at room temperature or higher temperature (100 °C) affords 2-amino-1-alkenyl ketones (4) in moderate yields. However, from the reactions of ketone 1a with diethylamine and of 1c with aniline the starting ketones 4 were recovered quantitatively.

nura,
$$R^1-C-CH=C$$

$$R^2$$

$$R^1-C-CH=C$$

$$R^2$$

$$R^1-C-CH=C$$

$$R^2$$

$$R^1-C-CH=C$$

$$R^2$$

$$R^1-C-CH=C$$

$$R^2$$

$$R^1-C-CH=C$$

$$R^2$$

$$R^3$$

$$R^4$$

$$R^5$$

The Substitution Reaction of 2-Alkylthio-1-alkenyl and 2-Alkylsulfinyl-1-alkenyl Ketones with Amines: Preparation of 2-Amino-1-alkenyl Ketones

Takehiko Nishio, Yoshimori Омоте

Department of Chemistry, University of Tsukuba, Sakura-mura, Niihari-gun, Ibaraki, 300-31, Japan

2-Alkylthio-1-alkenyl ketones (1) and 2-alkylsulfinyl-1-alkenyl ketones (2) are useful intermediates for the synthesis of a variety of compounds¹. They possess reactive sites for

0039-7881/80/0532-0390 \$ 03.00

© 1980 Georg Thieme Verlag · Stuttgart · New York

Table 1. Preparation of 2-Amino-1-alkenyl Ketones (4)

Starting Ketone	R¹	R ²	R³	R ⁴	R ⁵	Conditions	Yield [%]	Recovery of 1 or 2 [%]
1a	C ₆ H ₅	CH ₃	C ₂ H ₅	n-C ₃ H ₇	Н	r.t., 15 h	36	64
1a	C_6H_5	CH_3	C_2H_5	C_6H_5	Н	r.t., 15 h	55	45
1a	C_6H_5	CH_3	C_2H_5	(CH ₂) ₂ O	$-(CH_2)_2$	r.t., 15 h	85	trace
2a	C_6H_5	CH ₃	C_2H_5	(CH ₂) ₂ O	—(CH ₂) ₂ —	r.t., 3 h	99	trace
1a	C_6H_5	CH_3	C_2H_5	CH ₃	CH ₃	r.t., 15 h	65	trace
2a	C_6H_5	CH ₃	C_2H_5	CH_3	CH ₃	r.t., 1 h	95	trace
1a	C_6H_5	CH ₃	C_2H_5	C_2H_5	C_2H_5	reflux, 10 h	1819778	quantitative
2a	C_6H_5	CH_3	C_2H_5	C_2H_5	C_2H_5	r.t., 2 h	93	trace
1b	C_6H_5	Н	C_2H_5	C_6H_5	Н	r.t., 15 h	76	trace
1b	C_6H_5	Н	C_2H_5	CH ₃	CH ₃	r.t., 15 h	90 (88) ^b	trace
1c	C_6H_5	C_6H_5	C_2H_5	C_6H_5	H	100°Ca, 10 h		quantitative
2e	C_6H_5	C_6H_5	C_2H_5	C_6H_5	Н	r.t., 5 h	65	30
1c	C_6H_5	C_6H_5	C_2H_5	(CH ₂) ₂ —O	- (CH ₂) ₂	reflux, 10 h	95	trace
2c	C_6H_5	C_6H_5	C_2H_5	$(CH_2)_2 - O$	(CH ₂) ₂	r.t., 5 h	80	trace
1d	CH_3	CH_3	$n-C_4H_9$	C_6H_5	H	reflux, 10 h	25	55
1d	CH_3	CH_3	$n-C_4H_9$	-(CH ₂) ₂ O	(CH ₂) ₂	reflux, 5 h	30	70
1d	CH ₃	CH_3	$n-C_4H_9$	- (CH ₂) ₂ O	(CH ₂) ₂	100 °Ca, 5 h	80	8

^a In a sealed tube.

Table 2. Data of 2-Amino-1-alkenyl Ketones (4)

R¹	R ²	R ⁴	R ⁵	m.p. or b.p./torr [°C]	Molecular formula ^a or m.p. reported	I.R. ν [cm - ¹]	'H-N.M.R. (CDCl ₃) δ [ppm]
C ₆ H ₅	СН₃	Н	n-C ₃ H ₇	b.p. 120°/2 ^b	C ₁₃ H ₁₇ NO (203.3)	1610, 1545, 755, 695	1.02 (t, 3H); 1.4–1.9 (m, 2H); 2.05 (s, 3H); 3.25 (q, 2H); 5.65 (s, 1H); 7.2–7.5 (m, 3H); 7.7–8.0 (m, 2H); 11.5 (br s, 1H)
C ₆ H ₅	CH ₃	Н	C ₆ H ₅	m.p. 105-106°	C ₁₆ H ₁₅ NO (237.3)	1615, 1540, 750, 690	
C ₆ H ₅	CH ₃	(CH ₂) ₂ O	-(CH ₂) ₂	m.p. 141.5–142.5°	C ₁₄ H ₁₇ NO ₂ (231.3)	1605, 1530, 760, 690	
C ₆ H ₅	CH ₃	CH ₃	CH ₃	m.p. 45-46°	C ₁₂ H ₁₅ NO (189.3)	1605, 1540, 760, 700	2.62 (s, 3 H); 3.00 (s, 6 H); 5.63 (s, 1 H); 7.2–7.5 (m, 3 H); 7.7–8.0
C ₆ H ₅	CH ₃	C_2H_5	C_2H_5	b.p. 110°/2 ^b	C ₁₄ H ₁₉ NO (217.3)	1615, 1530, 765, 705	(m, 2H) 1.22 (t, 6H); 2.67 (s, 3H); 3.37 (q, 4H); 5.73 (s, 1H); 7.2-7.6
C ₆ H ₅	Н	Н	C_6H_5	m.p. 139-140°	m.p. 140-141°4	1620, 1545, 740, 680	(m, 3H); 7.7-8.0 (m, 2H) 6.01 (d, 1H, J=7.8 Hz); 7.05- 7.6 (m, 9H); 7.85-8.0 (m, 2H);
C ₆ H ₅	Н	CH ₃	CH ₃	m.p. 92-94°	m.p. 90-91°4	1640, 1540, 760, 705	12.15 (br s, 1 H) 3.00 (s, 6 H); 5.68 (d, 1 H, J = 13.5 Hz); 7.78 (d, 1 H, J = 13.5 Hz); 7.25-7.5 (m, 3 H);
C ₆ H ₅	C ₆ H ₅	Н	C ₆ H ₅	m.p. 101-102°	m.p. 102~103°5	1600, 1575, 765, 750,	7.8–8.0 (m, 2H) 6.08 (s, 1H); 6.7–7.5 (m, 13H); 7.9–8.0 (m, 2H); 12.9 (br s,
C ₆ H ₅	C ₆ H ₅	(CH ₂) ₂ O	-(CH ₂) ₂	m.p. 9495°	m.p. 92–93°5	700, 690 1660, 1600, 1525, 765,	1 H) 3.2-3.35 (m, 4H); 3.65-3.8 (m, 4H); 6.00 (s, 1 H); 7.2-7.45 (m,
CH ₃	CH ₃	Н	C ₆ H ₅	m.p. 101.5~103°	m.p. 103°4	705 1600, 1565, 765, 750,	(s, 1 H); 7.1–7.4 (m, 5H); 12.46
CH ₃	CH ₃	-(CH ₂) ₂ O	(CH ₂) ₂	b.p. 112°/2 ^b	C ₉ H ₁₅ NO ₂ (169.2)	700 1630, 1550	(br s, 1 H) 2.09 (s, 3 H); 2.47 (s, 3 H); 3.25- 3.36 (m, 4 H); 3.68-3.79 (m, 4 H); 5.42 (s, 1 H)

The microanalyses were in satisfactory agreement with the calculated values (except for the last compound listed; C, +0.43): C, ±0.32; H, ±0.12; N, ±0.27.

^b Yield obtained from 1-chloro-3-oxo-3-phenylpropene and dimethylamine⁴.

b Kugelrohr temperature.

392 Communications SYNTHESIS

On the other hand, the reaction of the 2-alkylsulfinyl-1-alkenyl ketones 2a, c with several amines in benzene at room temperature affords the corresponding ketones 4 in good yields.

From the results listed in Table 1 it can be seen that the reaction of compounds 2 with amines proceeds under milder conditions than that of compounds 1 with amines.

Known compounds 4 were identified by comparison with authentic samples^{4,5,6}. The structure of new compounds 4 was established by microanalyses, I.R., and ¹H-N.M.R. spectra.

2-Amino-1-alkenyl Ketones (4) from 2-Alkylthio-1-alkenyl Ketones (1) and Amines (5); General Procedure:

A solution of the ketone 1 (1 mmol) and the amine 5 (1.2 mmol) in benzene (30 ml) is stirred for 5–15 h at room temperature or at reflux temperature or heated at $100\,^{\circ}$ C in a sealed tube (see Table 1). The reaction mixture is then poured into dilute hydrochloric acid (30 ml) and the resultant mixture extracted with benzene (2 × 30 ml). The extract is washed with water (1 × 50 ml), dried with magnesium sulfate, and evaporated. The residual product is purified by distillation or recrystallization from methanol.

2-Amino-1-alkenyl Ketones (4) from 2-Alkylsulfinyl-1-alkenyl Ketones (2) and Amines (5); General Procedure:

A solution of the ketone 2 (1 mmol) and the amine 5 (1.2 mmol) in benzene (30 ml) is stirred for 1-5 h at room temperature (see Table 1), and is then poured into dilute hydrochloric acid (30 ml). The mixture is extracted with benzene (2 × 30 ml), the extract washed with water (1 × 50 ml), dried with magnesium sulfate, and evaporated. The residual product is purified by distillation or recrystallization from methanol.

Received: August 6, 1979 (Revised form: October 9, 1979)

0039-7881/80/0532-0392 \$ 03.00

W. D. Rudorf, A. Schierhorn, M. Augustin, Tetrahedron 35, 551 (1979).

² T. Nishio, Y. Omote, Chem. Lett. 1979, 365.

³ R. Gompper, W. Töpfl, Chem. Ber. 95, 2871 (1962).

F. Clesse, H. Quiniou, Bull. Soc. Chim. Fr. 1972, 581.

⁴ A. E. Pohland, W. Benson, *Chem. Rev.* **66**, 161 (1966); and references cited therein.

⁵ R. A. Bolshedvorskaya, S. R. Korshunov, S. I. Demina, L. I. Vereshchagin, *Zh. Org. Khim.* 4, 1541 (1968); *C. A.* 70, 3983 (1969).

⁶ N. M. D. Brown, D. C. Nonhebel, Tetrahedron 24, 5655 (1968).