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Summary: Enantiocontrolled syntheses of the Cuparene sesquiterpenes, (-)- 
herbertene, (+)-S-cuparenone, (-)-debromoaplysin, and (-)-aplysin, have been 
achieved starting from the optically active tricyclic dienone by employing a Fischer 
indolization reaction under non-acidic conditions as the key step. 

Owing to its biased structure, the optically active tricyclic dienone 1, accessible 

readily from dicyclopentadiene,lTz undergoes electrophilic reaction at p carbon and 

nucleophilic reaction at a center (after saturation of the enone double bond) with 

virtually complete exe-face selectivity. However, difficulty in direct introduction of 

an aryl group as well as the functional groups having sp2 and sp orbitals at a carbon 

center restricts its extensive use as a versatile chiral building block.3 We now 

describe a method for the stereoselective introduction of an aryl group at a center 

employing a Fischer indolization reaction under non-acidic conditions4 which could be 

utilized for the syntheses of the cuparenone sesquiterpenes, (-)-herbertenes (2>, (+)-P- 

cuparenone617 (3), (-)-debromoaplysin*v9 (4), and (-)-aplysin9,tu (5) (Scheme 1). 
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Scheme 1 

When the a-methylketone 6, obtained in 73% yield from the optically pure 

dienone” 1 in two steps,sf was refluxed with p- or o-tolylhydrazine hydrochloride in 

aqueous pyridine (1: 10) at reflux temperature, facile reaction occurred to give the 

corresponding pentacyclic carbinol amines 10, as a single product’2 lOa, [a]o31+122.4” 

(c l.ll), from the former and as a mixture of two regioisomers 10b and 10~ from the 

latter in 72 and 75% yields, respectively. In each reaction the aryl group was 

introduced diastereospecifically from the convex face without damaging the acid- 

sensitive double bond under these non-acidic conditions. 
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=~R,~*Hy tfii?F$ 
R3 R2 lib : (R,=H, k,:Me) Me 

10a : (R,=Me, R2=R3=H) 12 (R=H) 
lob : (R,=Me, R,=R,=H) 21 (R=Me) 

1Oc : (R3=Me, R,=R2=H) 

Scheme 2 
Reagents: (a) (i) Zn, AcOH, EtOH, reflux, (ii) LDA, Mel. THF, 73%; (b) NaNOZ, H3PO2, 0 “C. 

The amine’2 li_ta, on diazotization reaction under the reductive conditions,t 3 

afforded the ketone’2 Ila, [a]D 29 4210.6” (c l.lO), in 70% yield as a single product. 

Very interestingly, the latter mixture lob/c, on the same treatment, furnished the 

ketone Ilb, mp 77-78 ‘C, [al=30 -250.9’ (c 1.03), and the hemi-ketal 12 in yields of 

28 and 21%, respectively, as a single product (Scheme 2). Specific formation of the 

hemi-ketal 12 in the latter mixture was presumed to be due to the steric hindrance in 

the 1,2,3_trisubstituted aryl isomer 1Oc in which reduction was suppressed by 

neighboring methyl group to give rise to the observed product by intervention of the 

ketoxonium intermediate 14 (Scheme 3). 

1oc - 

Upon thermolysis in refluxing o-dichlorobenzene, both of the isomeric ketones 

llar2 and llb afforded the corresponding cyclopentenones 15a,t2 [o]D31 +2.9” (C 

1.03), and ISb, [o]D24 +7.68* (c 0.96) [lit. Tb: [a]D24 +7.1’ (c 1.16, CHCl3)], in 71 and 78% 

yields, respectively, by retro-Diels-Alder reaction. Reaction of these with 

methyllithium followed by oxidation furnished the corresponding enones 17a,12!14 

13 14 

Scheme 3 
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[aID -209.8” (c 1,17), and 17b,14 [a]~29 +233.3’ (c 1.32) [lit.: [alozO +253* (c 1.7, 

CHC13)7a; [a]$4 +236’ (c 1.02, CHC13}7b], in 53 and 87% yields, which were then treated 

with dimethylzinc 7a to give the cyclopentanones, 18a,12 [alD32 -41.0’ (c l.ZS), and 

lSb, [aID +44.6” (c 0.57), in yields of 53 and 74%, respectively. The latter was 
identical with (+)-fi-cuparenone (3), [a)osO +45.0’ (c 1.4, CHC13).7a The former ketone’ 2 

18a was further transformed into the dithiane 12 19a, [ol]~29 -30.0” (c 1.23), in 85% 

yield which on desulfurization with Raney nickel afforded (--)-herbertene (21, Ic&]D~~ 

-48.9O (c 0.32) [naturaF: [a]~ -48.3O (c 1.31, CHC13)] in 47% yield. This constitutes the 

first enantio-controlled synthesis of this terpenoid (Scheme 4). 

15a,b 16a,b 17a,b 
laa (X=0) 

a series : R,=Me, F$=H e 
b series : R, =H. R2=Me 6, 

18b (X=0)=3 
9 (X= -S(CH2)& 

f 62 (R,=Me, Rz= H, X4$ 

Scheme 4 
Reagents: (a) o-DCB, reflux, (b) MeLi, THF. (c) Jones oxidation, (d) MezZn, Ni(acacI2, EtzO, (e) 
CHz(CH$H)z, BF3*OEtZ, (f) Raney Ni, E0-L room temperature. 

On the other hand, upon diazotization reaction in aqueous methanol,15 the 

mixture 10 b/c furnished the keto-ether 20 and the acetal 21 in 34 and 33% yield. 

The ketone 20 was then alkylated with methyl iodide in the presence of lithium 

diisopropylamide to give 22, mp 105-106 “C, [U]031 -158.4” (c l.O>, which on 

thermolysis as above afforded the cyclopentenone 23, [alo -61.1’ (c 1.07), in 51% 

Scheme 5 
Reagents: (a) NaN02, cont. H2S04 (cat.), MeOH. (b) LDA, MeI, THF, (c) o-DCB. reflux, (4 MeLi. THF, 
(e) PCC, CH2CI2, (f) BBrj, (CH$l)2, 80 “C, (g) iBu2A1H, CH$Y, then 10% aq. HCI, (h) Hz. PtO2, EtOH, (i) 
NBS, CC14, reflux. 
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overall yield. Reaction of 23 with methyllithium followed by oxidation of the 
resulting allylic alcohol mixture 24 gave the single enone 25, [a]~31 +245.4” (c I.OS), 

in 67% overall yield, whose ether bond was cleft with boron tribromide’b to give the 
phenol 26, mp 183-183.5 “C, [a]#’ t246.8” (c l.ll), in 60% yield. Reduction of 26 

with diisobutylaluminum hydride brought about spontaneous cyclization of the 
product 27 to furnish the tricyclic ether9 28, [a]~ 30 -124.9” (c 0.61), in 60% yield after 

work-up with diluted hydrochloric acid. Hydrogenation’7 of 28 proceeded in a 
stereospecific way from the convex face to give (-)-debromoaplysin (4), [alo -66.5” 

(c 0.72) [naturals: ]U]Dzl -68”], in 83% yield. Upon exposure to N-bromosuccinimide, 4 

afforded (-)-aplysin (5), mp 84.5-85.5 “C, [a]D32 -83.5’ (c 0.31) [naturallo: mp 85-86 

“C, [a]Dz7 -85.4’ (CHC13)], in 87% yield. Since the former chiral synthesis9 has been 

achieved by optical resolution in the later stage, the present instance constitutes 

virtually the first enantiocontrolled synthesis of these two natural terpenoids 

{Scheme 5). 
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