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Stereoselective oxygenation of bicyclic lactams
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Abstract—Stereoselective syntheses of the epoxy and diol derivatives of a bicyclic lactam derived from pyroglutamic acid are
reported, and their reactivity is discussed.
� 2004 Elsevier Ltd. All rights reserved.
Pyrrolidines are widely occurring structural sub-units in
natural products, and recently hydroxylated examples
have begun to emerge as an important structural sub-
type with diverse biological activity. Examples include
pramanicin, an antibiotic and antifungal agent,1 epo-
lactaene, a nerve growth factor,2 anisomycin, an anti-
protozoal and antifungal agent,3 plakoridine, a cytoxic
agent4 and polyhydroxylated pyrrolidine and pyrrolizi-
dine alkaloids such as the broussonetines5 and radic-
amines,6 which are highly effective competitive
glycosidase inhibitors. Aside from the obvious route for
the synthesis of these compounds from carbohydrate
precursors, one possibility is the introduction of oxygen
functionality onto a pre-existing lactam ring. Barratt
et al. in their synthesis of pramanicin achieved this indi-
rectly by introduction and subsequent interconversion
of silicon functionality.7 Meyers et al. have demon-
strated that direct epoxidation of chiral unsaturated
lactams of type 1 using NMO in excellent yield is pos-
sible provided that the alkene is also activated with an
ester function (Fig. 1).8 Although the epoxidation9;10 of
unactivated lactam 2a to give 3a has also been previ-
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ously reported, carefully optimised reaction conditions
were required for successful conversion.11 Surprisingly,
no investigation of similar reactions of the activated
system 2b have been made, although conjugate addition
of carbon12;13 and nitrogen14;15 nucleophiles have been
described, and this communication reports our findings
in this regard.

Application of the Herdeis conditions (t-BuOOH/
nBu4NF/K2CO3/DMF)10 to the activated lactam 2b
gave only a 20% yield of the expected product 3b, and
examination of a large number of alternative conditions
to improve the yield (e.g., NMO,8 alkaline hydrogen
peroxide,16 hydrogen peroxide–Triton B,17 and hydro-
gen peroxide–t-BuLi18) were unsuccessful (Scheme 1).
Frustrated by this lack of success, a series of experi-
ments was conducted in which lactam 2b was treated
with hydrogen peroxide in dichloromethane, and buf-
fered at pH3, 5, 7 and 9, with vigorous stirring for 24 h;
at pH 9 (sodium tetraborate–HCl), it was found that
yields of epoxide 3b of up to 70% were readily
obtained.19 At lower pH, the epoxidation reaction was
markedly slower and at pH 3 the sole product was dimer
4. These results were surprising, since we had found
earlier that enone 2b rapidly dimerised on storage20 or
under basic conditions14 to give dimer 4. The stereo-
structure of 3b was initially established by NOE analysis
(which exhibited clear enhancement in the series H-
2fiH-4endo fiH-6, indicating their cis-, endo-relation-
ship, see Fig. 2) and later confirmed by X-ray analysis.21

This compound was readily deprotected to give pyro-
glutaminol 5 in quantitative yield.

Investigation of the ring opening chemistry of epoxide
3b indicated an unexpected lack of reactivity under
acidic,22–24 nucleophilic (PhSeNa, AcOH, EtOH)25 or
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reductive (SmI2
9;10 or LiAlH4

26) conditions, but sodium
azide/methanol/water gave the trans-azido alcohol 6a in
low yield (14%), whose stereochemistry was confirmed
by NOE studies (Fig. 2); this material was the same as
that obtained from reaction of epoxide 3a under previ-
ously reported identical reaction conditions.10 Similar
lack of reactivity of epoxides of this type has been pre-
viously reported: the nucleophilic opening of the epox-
ide 3a is difficult, and apart from the azide opening
outlined above, could only be achieved with NaI/
NaOAc/HOAc to give iodide 6b.10 The formation of
epoxides in the reactions of related bicyclic piperidi-
nones has also been reported by Amat et al. who also
found that the epoxide exhibited low reactivity to
nucleophilic opening.27

Attention was then turned towards the synthesis of di-
hydroxylated lactam 7a. There is literature precedent for
the cis-dihydroxylation of lactam 2a using osmium
tetroxide under standard conditions.11 However, these
conditions failed with lactam 2b, and it was desirable to
identify suitable reagents that could be used with the
same conditions that had proved so successful for the
epoxidation reaction (DCM buffered at pH 9). One such
reagent is potassium permanganate,28 and application of
this reagent in conjunction with 18-crown-6 ether yield-
ed the required dihydroxylated product 7a in 30%
yield.29 The stereochemistry was initially established by
NOE analysis in dry d6-DMSO, which enabled resolu-
tion of the C(6) and C(7) hydroxyl groups (Fig. 2) and
confirmed by X-ray analysis of the white crystals
obtained after purification by column chromatogra-
phy.21 The diol 7a was successfully acetylated with acetic
anhydride to give the monoacetylated product 7b,29 as
evidenced by a significant downfield shift of C(6)H (to d
5.17 from d 4.34 in the starting material) but oxidation
of 7a to the corresponding ketone proved not to be
possible under several conditions (Swern, PCC and
RuCl3/NaIO4), perhaps due to steric hindrance at this
position.

Thus, diastereocontrolled oxygenation of the ring of
bicyclic lactams derived from pyroglutamic acid has
proved to be possible, leading to highly functionalised
derivatives, although these products have displayed
unexpected reactivity.
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