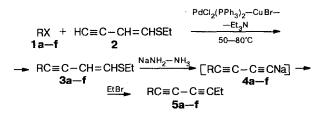
A new procedure for the synthesis of arylor hetaryl-substituted conjugated diynes

S. F. Vasilevskii,^a* M. Fossatelli,^b A. H. T. M. van der Kork,^b and L. Brandsma^b

^aInstitute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 3, ul. Institutskaya, 630090 Novosibirsk, Russian Federation. Fax: +7 (383) 235 2350 ^bDebye Institute, University of Utrecht, Department of Preparative Organic Chemistry, 8 Padualaan, 3584 CH Utrecht, The Netherlands

On treatment with two equivalents of $NaNH_2$ in liquid ammonia the enyne sulfides RC=C-CH=CHSEt (*cis*-isomers, where R is an aryl or a hetaryl) afford sodium salts of 1,3-diynes. The latter react with ethyl bromide to produce disubstituted diynes RC=C-C=CEt in high yields.


Key words: 1-alkylthio-1-buten-3-ynes; 1,3-diynes, mono- and disubstituted.

Monosubstituted 1,3-diynes are convenient synthones for the preparation of various dienes, enynes and polyynes.

The synthesis of monosubstituted 1,3-diynes by functionalizing one of the two methyne groups of butadiyne is often accompanied by the formation of a mixture of mono- and disubstituted diacetylenes that are difficult to separate.¹ In addition, the explosive nature of butadiyne makes it impossible to perform the reactions on a large scale.

We have chosen the ethylsulfide group as the protective group for butadiyne. On the one hand, this group stabilizes the 1,3-butadiyne system. On the other hand, due to the blocking of one of the ethynyl fragments, the remaining terminal HC=C group can be functionalized unambiguously; subsequent removal of the sulfide protection makes it possible to repeat the substitution at the other terminus.

The procedure that we have elaborated includes the condensation of aryl- or hetarylbromides and -iodides (1) with 1-ethylthio-1-buten-3-yne (2) in the $PdCl_2(PPh_3)_2$ —Cu(I)—amine catalytic system,²⁻⁴ followed by treatment of the coupling product (3) with 2 equiv. of NaNH₂ in liquid ammonia, and subsequent alkylation of the sodium diacetylenides thus obtained (4) with ethyl bromide.

R = Ph (a), 2-thienyl (b), 3-thienyl (c), 2-furyl (d), 2-pyridyl (e) \varkappa 3-pyridyl (f); X = Br, I.

The condensation of aryl- and hetaryl halides 1a-f with 2 was carried out in the $PdCl_2(PPh_3)_2-CuBr-Et_3N$ system at 50-80°C (Table 1). Compounds 3a-f are rather stable and withstand vacuum distillation. According to the ¹H NMR spectral data, they retain the initial *cis*-configuration. As could be anticipated, the halopyridines were more reactive than the corresponding halo derivatives of five-membered heterocycles.

The elimination of ethylthiol from 3a was carried out by the action of NaNH₂ in liquid ammonia; however, we could not isolate the individual 1-phenylbutadiyne. The low stability of terminal diynes prompted us to carry out the substitution at the second methyne group without isolating the intermediate monosubstituted 1,3-diyne.

Synthesis of aryl- (hetaryl-) ethylbutadiynes was carried out by treating 3 with 2 equiv. of NaNH, in liquid ammonia followed by the action of an excess of ethyl bromide (1 mol of EtBr is necessary to bind the EtSNa formed). Phenyl-, 2-furyl-, 2- and 3-thienyl-, and 3-pyridylenynes react smoothly to give the corresponding disubstituted butadiynes 5 in 60–90 % overall yields (Table 2). In the case of the 2-substituted pyridine derivative 3e the final product contained an admixture (~30 %) of a product resulting from the further transformations, 6-(2-pyridyl)-2,4-octadiyne (6). Its formation is assumed to be caused by rapid deprotonation of butadiyne 5e followed by attack on the anion formed by ethyl bromide.⁵ In order to verify this assumption, compound 5e, prepared from 2-ethynylpyridine and 1-bromo-1-butyne, was treated with an equimolar amount of NaNH₂ in NH₃ in the presence of excess EtBr, which in fact led to the formation of diyne 6 (70 %); in addition, 25 % of the starting 5e was returned.

The structure of **6** was confirmed by means of massspectrometry and by the ¹H NMR and IR spectroscopy data (see Table 2).

Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 348-350, February, 1993.

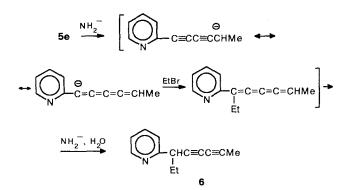
1066-5285/93/4202-0307\$12.50 @1994 Plenum Publishing Corporation

Com- po-	Time (T)	Yield (%)	Bp (°C) at 0.05	n_D^{20}	Molecular formula	Found Calculated (%)			¹ H NMR (CCl ₄), δ, <i>J</i> (Hz)
und			Torr			С	Н	N	
3a	1.5 (80°C)	93.0	118—120	1.6410	C ₁₂ H ₁₂ S	<u>76.23</u> 76.55	<u>6.59</u> 6.42	<u>17.20</u> 17.03	1.25 (t, 3 H, Me, $J = 6$); 2.75 (q, 2 H, CH ₂ , J = 6); 5.55 (d, 1 H, =CH, $J = 10$); 6.40 (d, 1 H, =CH, $J = 10$); 7.1–7.4 (m, 5 H, Ph)
3b	3 (80°C)		122—125	1.6740	$C_{10}H_{10}S_2$	<u>61.85</u> 61.80	<u>5.12</u> 5.18	<u>33.00</u> 33.02	1.30 (t, 3 H, Me, $J = 6$); 2.76 (q, 2 H, CH ₂ , $J = 6$); 5.62 (d, 1 H, =CH, $J = 10$); 6.8–7.2 (m, H arom.)
3c	2 (80°C)		125—126	1.6640	$C_{10}H_{10}S_2$	<u>61.72</u> 61.80	<u>5.19</u> 5.18	<u>33.13</u> 33.02	1.23 (t, 3 H, Me, $J = 6$); 2.65 (q, 2 H, CH ₂ , J = 6); 5.55 (d, 1 H, =CH, $J = 10$); 6.35 (d, 1 H, =CH, $J = 10$); 6.9–7.4 (m, H arom.)
3d	3.5 (80°C)		110-112	1.6325	C ₁₀ H ₁₀ SO	<u>67.50</u> 67.38	<u>5.42</u> 5.65	<u>17.80</u> 17.99	1.25 (t, 3 H, Me, $J = 6$); 2.68 (q, 2 H, CH ₂ , J = 6); 5.55 (d, 1 H, =CH, $J = 9$); 6.2–6.5 (m, 4 H, =CH, H arom.), 7.22 (d, 1 H, α -H furyl)
Зе	1.5 (50°C)		140—145	1.6490	C ₁₁ H ₁₁ NS	<u>69.51</u> 69.80	<u>5.92</u> 5.85	<u>17.09</u> 16.94	1.30 (t, 3 H, Me, $J = 6$); 2.81 (q, 2 H, CH ₂ , J = 6); 5.68 (d, 1 H, =CH, $J = 9$); 6.98 (d, 1 H, =CH, $J = 9$); 7.37.4 (m, 3 H, β,β',γ -H pyridyl); 8.45 (d, 1 H, α -H pyridyl)
3f	2.5 (50°C)	79.1	135—140	1.6490	C ₁₁ H ₁₁ NS	<u>70.01</u> 69.80	<u>5.71</u> 5.85	<u>17.10</u> 16.94	1.40 (t, 3 H, Me, $J = 6$); 2.82 (q, 2 H, CH ₂ , J = 6); 5.67 (d, 1 H, =CH, $J = 10$); 6.60 (d, 1 H, =CH, $J = 10$); 7.0–7.8 (m, 2 H, β , γ -H py- ridyl); 8.3–8.8 (m, 2 H, α , α '-H pyridyl)

 Table 1. 4-Aryl(hetaryl)-1-ethylthio-1-buten-3-ynes (3)

Table 2. Products obtained on treatment of sulfides 3 with $NaNH_2$ and EtBr

po-	Yield (%)	Bp (°C) n_D^{20} at 0.05	Molecular formula	Found Calculated (%)				¹ H NMR (CCl ₄), δ , J (Hz)
und		Torr		С	Н	N	S	
5a	90.2	85—90 1.6140	C ₁₂ H ₁₀	<u>93.71</u> 93.46	<u>6.28</u> 6.54			1.22 (r, 3 H, Me, $J = 6$); 2.35 (q, 2 H, CH ₂ , J = 6); 7.1–7.5 (5 H, Ph)
5b	62.5	90—95 1.6475	$C_{10}H_8S$	<u>75.09</u> 74.96	<u>4.85</u> 5.03		<u>20.09</u> 20.01	1.28 (r, 3 H, Me, $J = 6$); 2.46 (q, 2 H, CH ₂ , $J = 6$); 6.8–7.4 (m, 3 H, α,β,β' -H tienyl)
5c	94.5	93—97 1.6380	C ₁₀ H ₈ S	<u>74.70</u> 74.96	<u>5.23</u> 5.03		<u>20.00</u> 20.01	1.20 (r, 3 H, Me, $J = 6$); 2.32 (q, 2 H, CH ₂ , $J = 6$); 6.9–7.5 (m, 3 H, α, α', β -H tienyl)
5d	70.0	75-80 1.5930	C ₁₀ H ₈ O	<u>83.65</u> 83.30	<u>5.40</u> 5.59			1.20 (τ , 3 H, Me, $J = 6$); 2.36 (2 H, CH ₂ , $J = 6$); 6.2-6.6 (m, 3 H, α , β , β '-H furyl)
5e	60.0	100—105 1.6185	C ₁₁ H ₉ N	<u>85.40</u> 85.13	<u>5.61</u> 5.84	<u>8.92</u> 9.03		1.20 (r, 3 H, Me, $J = 6$); 2.38 (q, 2 H, CH ₂ , $J = 6$); 7.0–7.7 (m, 3 H, β,β',γ -H pyridyl); 8.45 (1H, α -H pyridyl)
5f	61.0	90—95 1.6135	C ₁₁ H ₉ N	<u>84.91</u> 85.13	<u>5.98</u> 5.84	<u>9.21</u> 9.03		1.28 (r, 3 H, Me, $J = 6$); 2.35 (q, 2 H, CH ₂ , $J = 6$); 6.9–7.5 (m, 2 H, β_{γ} -H pyridyl); 8.3–8.7 (m, 2H, $\alpha_{\gamma}\alpha'$ -H pyridyl)
6*	30.0	112-115 1.5930	C ₁₃ H ₁₃ N	<u>84.98</u> 85.21	<u>7.30</u> 7.15	<u>7.81</u> 7.64		0.75 (r, 3 H, Me, $J = 6$); 1.95 (c, 3 H, CH ₃ C=C); 2.38 (m, 3 H, CH ₂ μ CH); 7.0–7.6 (m, 3 H, β,β',γ-H pyridyl); 8.46 (1 H, α-H pyridyl)


* Mass spectrum, m/z: 183 [M⁺]; IR, v (cm⁻¹): 2220, 2235 (C=C).

In a similar way, the products of deeper alkylation were found when even a minor excess of $NaNH_2$ (2.1 *M*) and EtBr were allowed to interact with the 2-thienyl- and 2-furyl derivatives (**3b**, **3d**). The side process can be avoided if exactly two equivalents of NaNH₂ are used.

Experimental

The ¹H NMR spectra were recorded with a Varian EM 360 spectrometer in CCl_4 .

The starting sulfide 2 was prepared in 82 % yield using a modified⁶ Shostakovski procedure.⁷

The condensation of aryl- (hetaryl-) halides (1) with 1ethylthio-1-buten-3-yne (2) (general procedure). A mixture containing 0.1 mol of a bromo- (1d-1f) or iodo-derivative (1a-1c), a terminal acetylene 2 (0.13 mol), 0.3 g of PdCl₂(PPh₃)₂, 0.5 g of PPh₃, and 0.2 g of CuBr in Et₃N (50 mL) was heated under a N₂ atmosphere at 50-80°C (Table 1) until the reaction was completed. After cooling, the reaction mixture was twice diluted with pentane and decanted. The combined organic extract (*ca.* 400 mL) was washed with water (2×100 mL), the organic layer was separated, dried with MgSO₄, and purified by distillation (see Table 1).

The following compounds were prepared according to this procedure: 4-phenyl-1-ethylthio-1-buten-3-yne (**3a**); 4-(2-thienyl)-1-ethylthio-1-buten-3-yne (**3b**); 4-(3-thienyl)-1-ethylthio-1-buten-3-yne (**3c**); 4-(2-furyl)-1-ethylthio-1-buten-3-yne (**3d**); 4-(2-pyridyl)-1-ethylthio-1-buten-3-yne (**3e**); 4-(3-pyridyl)-1-ethylthio-1-buten-3-yne (**3f**).

The combined elimination-ethylation step (general procedure). Sulfide 3 (0.05 mol) in 50 mL of dry ether was added dropwise to a stirred suspension of sodium amide (0.1 mol) in The following compounds were prepared according to this procedure: 1-phenyl-1,3-hexadiyne (**5a**), 1-(2-thienyl)-1,3-hexadiyne (**5b**), <math>1-(3-thienyl)-1,3-hexadiyne (**5c**), <math>1-(2-furyl)-1,3-hexadiyne (**5d**), and <math>1-(2-pyridyl)-1,3-hexadiyne (**5e**), along with 6-(2-pyridyl)-2,4-hexadiyne (**6**) as a by-product, and 1-(3-pyridyl)-1,3-hexadiyne (**5f**).

References

- 1. M. F. Shostakovskii and A. V. Bogdanova, *Khimiya* Diatsetilena [Chemistry of Butadiyne], Nauka, Moscow, 1971 (in Russian).
- 2. H. A. Dieck and F. R. Heck, J. Organomet. Chem., 1975, 93, 259.
- 3. L. Cassar, J. Organomet. Chem., 1975, 93, 253.
- S. F. Vasilevskii, T. A. Sundukova, M. S. Shvartsberg, and I. L. Kotlyarevskii, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1979, 1661 [*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1979, **29**, 1536 (Engl. Transl.)].
- 5. L. Brandsma, Preparative Polar Organometallic Chemistry, Springer-Verlag, Heidelberg, 1991, 11.
- Brandsma, Preparative Acetylene Chemistry, 2nd ed., Elsevier, Amsterdam—Oxford—New York—Tokyo, 1988.
- I. I. Gusseynov, E. N. Prilezhaeva, and M. F. Shostakovskii, *Zh. Obshch. Khim.*, 1959, **29**, 3223 [J. Gen. Chem., 1959, **29** (Engl.Transl.)].

Received March 13, 1992

309