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Several 2-(2-phenylethyl)chromones have been shown to possess neuroprotective activity. However,
limited synthetic methods have been disclosed to construct the 2-(2-phenylethyl)chromone skeleton.
Herein, we report a straightforward 3-step preparation of five naturally occurring 2-(2-phenylethyl)chr-
omones utilizing the Claisen condensation as the key step.
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Natural products have been of great interest for many years,
and have provided modern medicine with numerous useful drug
leads.1,2 One family of natural products being widely explored for
their biological activity are those containing the chromone skele-
ton (1, Fig. 1).3 Of particular interest are those chromones with
central nervous system (CNS) activity as they may provide new
therapeutics for CNS related disorders.4 Perhaps the most widely
studied chromones are the flavonoids (2, Fig. 1), which bear a phe-
nyl group at C-2.5

Recently, five chromones were isolated from Imperata cylindrica
and Aquilaria malaccensis (3–7, Fig. 1).6–8 Unlike flavonoids, these
chromones have a phenylethyl substituent at C-2 position, which
is quite uncommon.9 In addition to their unique structural feature,
chromones within this family have demonstrated neuroprotective
activity, a property for potentially treating neurodegenerative dis-
orders.6,10 As previously indicated the typical substituent at C-2 for
most of chromones is an aromatic ring; thus, most literature is
targeted towards the synthesis of chromones like 2.11 These meth-
odologies however are not necessarily transferable to the synthesis
of chromones bearing the phenylethyl substituent at C-2. Thus,
given their interesting pharmacology and uncommon substitution
pattern we sought to develop an efficient and rapid methodology
to arrive at the 2-(2-phenylethyl)chromone skeleton. Such a
methodology would be beneficial to aid in our future structure–
activity relationship studies for this class of chromones.

Retrosynthetic analysis of chromones 3–7 indicates the key
intermediate 8 or 12 prepared through the corresponding aldol
or Claisen condensation should be suitable to afford the desired
chromones (Scheme 1). Past literature has shown that the conden-
sation of aromatic aldehydes with 20-hydroxyacetophenones (9)
under aldol conditions leads to spontaneous cyclization to afford
intermediates as of 11.12 This domino reaction was considered
advantageous as oxidation of 11 would yield the desired 2-(2-
phenylethyl)chromone in as few as two steps. Accordingly,
20-hydroxyacetophenone 9 was condensed with hydrocinnamalde-
hyde (13) to afford the cyclized product 11 in 50% yield (Scheme 2).
Though in our initial trial it was anticipated that oxidation of 11
ive 2-(2-
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Scheme 1. Retrosynthetic analysis for 2-(2-phenylethyl)chromones 3–7.

Scheme 2. Attempted synthesis of 3 using aldol condensation condition. Reagents
and conditions: (i) piperdine (cat), EtOH, reflux, 24 h, 50%. (ii) DMSO, I2, 140 �C, 1 h.
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with iodine in refluxing DMSO13 would afford the desired product,
such conditions gave only a complex mixture. Other methodolo-
gies to affect this transformation were not pursued, as they would
each involve multiple reaction steps.

Given the difficulties associated with oxidation of 11, the alter-
native route utilizing the cyclization of 1,3-diones (8) was pursued.
The construction of these diones for chromone synthesis is typi-
cally accomplished using the Baker–Venkataraman rearrange-
ment.11 While this can be an effective strategy, the synthesis of
the precursor benzoate ester is not trivial when the dihydroxyace-
tophenone needed for the synthesis of 5–7 is adopted as the start-
ing reagent. Therefore, we sought to use the direct Claisen
condensation of acetophenone 9 with ester 10. This idea had been
explored in a previous report on the synthesis of 5 but only very
low yields (<9%) of the condensation product were obtained.14

Thus, this work sought to improve the application of the Claisen
condensation for the synthesis of natural products 3–7.

Due to the enolizable nature of both the ketone and ester, it was
expected that optimal yields of the Claisen condensation would be
achieved if preformation of the enolate from 9 was accomplished.
Consequently, 9 was added drop wise to a refluxing slurry of
Scheme 3. Synthesis of 2-(2-phenylethyl)chromones 3 and 4 utilizing the Claisen
condensation. Reagents and conditions: (i) NaH, THF, reflux, 1 h. (ii) 10, THF, rt,
24 h. (iii) AcOH or MeOH, HCl (cat.) reflux 45 min.
sodium hydride (NaH). After refluxing for 1 h the solution was al-
lowed to cool to room temperature and the ester (10) was added
drop wise and the solution stirred overnight (Scheme 3). Based
on previous literature we anticipated that the crude Claisen
condensation product (8) could be used directly for cyclization
without purification.15 Hence, the efficiency of the Claisen conden-
sation would be judged on the yield of the final product. Accord-
ingly, the crude 1,3-dione (8) was cyclized by refluxing in acetic
acid with trace amounts of HCl to yield 3 in 73% yield after purifi-
cation (Table 1, entry 1).

Continuing with this approach, attention was turned to the syn-
thesis of 4. The highly acidic and elevated temperatures used for
the cyclization to provide 3 would very likely lead to the hydrolysis
of the methoxy substituent of 4.16 On the other hand, another cyli-
zation strategy using refluxing methanol with trace HCl has been
reported to give comparable yields to that of refluxing acetic
acid.17 When applying this methodology, 4 was prepared in 55%
yield over three steps after purification (Table 1, entry 2).

The synthesis of 3 and 4 demonstrate the feasibility of the direct
Clasien condensation approach for the synthesis of 2-(2-phenyl-
ethyl)chromones. The low yields associated with previous
attempts on the synthesis of 5 through a direct Claisen condensa-
tion approach, were postulated to be the fact of both hydroxyl
groups being unprotected. Therefore, we hypothesized that incor-
poration of a protecting group for one or both of the hydroxyl
groups should allow a smoother Claisen condensation. Therefore,
2,6-dihydroxyacetophenone 9a was monoprotected as either the
methoxymethyl ether 14 or the benzyl ether 16 (Scheme 4).13,18

Benzyl ether 16 was then further protected with MOMCl to provide
17. These protecting groups were selected as they should both be
cleaved during the acidic cyclization step simultaneously.16 Fol-
lowing the above described methodology for the Claisen condensa-
tion, acetophenone 14 was used to prepare chromone 5 in 43%
yield over three steps (Scheme 5, Table 1, entry 3). Use of the ben-
zyl ether protected acetophenone 15 led to an increase in yield to
52% after purification (Table 1, entry 4). These results represent a
significant improvement over previous attempts utilizing the di-
rect Claisen condensation approach for the synthesis of 2-(2-phen-
ylethyl)chromones.14 It was concluded that the improvement in
yield was attributed to the monoprotection of 9. It was hoped then
that protection of both hydroxyl groups would further improve the
yield. However, when using 17 as the starting acetophenone, the
Claisen condensation did not take place (Table 1, entry 6). This
might be due to steric hindrance to the methyl group of the ketone
to prevent enolate formation.

Interestingly, when the order of addition was changed such that
14 was added to a refluxing solution of 13 a significant decrease in
the yield was observed (Table 1, entry 5).

In addition to changes in the order of addition and introduction
of protecting groups, alternative bases were also explored to
further improve the yield. Adoption of tBuOK or NaOMe did not



Table 1
Reaction conditions explored to optimize yields

Entry Base Acetophone Ester (10) R0 Claisen condensation conditions Cyclization conditions Product Yield (%)

1 NaH 9 H A HCl/AcOH/Reflux 3 73
2 NaH 9 4-OMe A HCl/MeOH/Reflux 4 55
3 NaH 14 H A HCl/AcOH/Reflux 5 43
4 NaH 16 H A HCl/AcOH/Reflux 5 52
5 NaH 14 H B HCl/AcOH/Reflux 5 24
6 NaH 17 H A – 5 –
7 NaOMe 14 H C – 5 –
8 LDA 14 H C – 5 –
9 KOtBu 14 H C – 5 –
10 NaH 14 H A HCl/MeOH/Reflux 5 40
11 NaH 14 H A HCl(xs)/MeOH/rt 5 15
12 NaH 16 H A – 6 –
13 NaH 16 2-OMOM D HCl/AcOH/Reflux 6 –
14 NaH 14 2-OMOM D HCl/MeOH/Reflux 6 83
15 NaH 14 H D HCl/MeOH/Reflux 5 80
16 NaH 15 H D HCl/MeOH/Reflux 7 73

Scheme 4. Protection of dihydroxyacetopheones. Reagents and conditions: (i)
diisopropylethylamine, CH2Cl2, MOMCl, rt, 1 h. (ii) BnBr, K2CO3, KI, acetone, reflux,
16 h.

Scheme 5. Synthesis of 2-(2-phenylethyl)chromones 5–7. Reagents and conditions:
(i) NaH, THF, reflux 1 h. (ii) 10, THF, reflux, 4 h. (iii) MeOH, HCl (cat.), reflux, 45 min.
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provide any of the desired products and only the starting materials
were recovered after workup. This may be attributed to the insol-
ubility of these salts in THF. The use of LDA did show consumption
of the starting material; however, after reaction workup only a
complex mixture of products was obtained. Thus, NaH seemed to
be optimal.

In the synthesis of 4 the cyclization solvent was changed from
acetic acid to methanol. The impact of this change on yield was
also investigated for the synthesis of 5. Refluxing in methanol pro-
vided yields comparable to those of acetic acid (Table 1, entry 10).
Cyclization in methanol at room temperature,19 however, gave sig-
nificantly reduced yields (Table 1, entry 11).

Based on the above results the synthesis of 6 was then under-
taken. When the Claisen condensation was carried out at room
temperature using acetophenone 16 and the MOM protected ester
10 no reaction was observed. Previous studies have shown that the
Claisen condensation can be carried out at elevated temperatures
when sterically crowded substrates are used.20 Based on this, after
preformation of the enolate, the solution was maintained at reflux
and the ester was added drop wise and the reaction mixture
allowed to reflux for another 4 h.21 Thin layer chromatography
(TLC) of this reaction showed consumption of starting acetophe-
none 16 and the appearance of a new fluorescent spot, which
was presumed to be the condensation product. However, refluxing
this crude Claisen condensation product in acetic acid produced an
extremely complex mixture by TLC (Table 1, entry 13). In response,
the monoprotected acetophenone 14 was used in the Claisen con-
densation under refluxing conditions. Again consumption of the
starting material was observed along with the appearance of a
new fluorescent spot. This crude product was then cyclized in
refluxing methanol and upon purification 6 was isolated in 83%
yield.22 The high yield of this reaction prompted a revisit to the
synthesis of 5. Utilizing the refluxing Claisen condensation condi-
tions and methanol for the cyclization solvent the yield of 5 was
also increased to 80%. Finally, using these optimized conditions
2,4-dihydroxyacetophenone 9b was converted to 2-(2-phenyl-
ethyl)chromone 7 in 73% overall yield.

In summary an efficient and rapid route has been developed
and applied to the synthesis of five naturally occurring 2-(2-phen-
ylethyl)chromones 3–7. Monoprotection of the starting dihydroxy-
acetophenones was proven to be critical for improving the yield of
the Claisen condensation. Sodium hydride was shown to be the
most effective base to execute the Claisen condensation. Carrying
out the condensation at reflux significantly reduced reaction time
while simultaneously increasing the yield. Furthermore, this meth-
odology can be used for the synthesis of 2-(2-phenylethyl)chro-
mones bearing substitutions on both phenyl rings. Thus, this
approach should allow for the convenient syntheses of a structur-
ally diversified compound library to further study the biological
activity of this class of compounds.
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