Photoinduced Transacetalization using a Tris(bipyridine)ruthenium(")–Methyl Viologen Cosensitizing System

Ryoji Noyori* and Isao Kurimoto

Department of Chemistry, Nagoya University, Chikusa, Nagoya 464, Japan

The title transacetalization between 2-phenoxytetrahydropyrans and octan-1-ol occurs *via* an initial one-electron exchange mechanism.

We recently reported a photoinduced transacetalization between 2-aryloxytetrahydropyrans and alcohols using an aromatic hydrocarbon-cyanoaromatic cosensitizing system, for which a novel S_{ON} 1 mechanism was proposed.¹ Here we describe the effect of tris(bipyridine)ruthenium(II) dichloride [Ru(bpy)₃²⁺] which causes photo-redox reactions by a welldefined mechanism,² proving the validity of this mechanism.

Almost no reaction took place when a 200 W mercury lamp was used to irradiate an equimolar mixture of 2-phenoxytetrahydropyran (1) and octan-1-ol in acetonitrile containing a catalytic amount of $\text{Ru}(\text{bpy})_3^{2+}$. However, addition of methyl viologen (MV^{2+}) as cocatalyst gave the acetal (2) and phenol. Thus the transacetalization was achieved under nearly neutral conditions. When the 6-methyl derivative (3) was irradiated with octan-1-ol, a 2:8 mixture of *cis*- and *trans*-(4) was obtained. The isomeric ratio was not affected by the stereo-

chemistry of the starting material (3). These products are stable under the reaction conditions, and the thermodynamic ratio of the stereoisomers is ca. 4:6.¹ Therefore the observed stereoselectivity appears to be a result of a kinetic anomeric effect in the nucleophilic reaction of octan-1-ol with the oxocarbenium intermediate. As shown in Table 1, the presence of a trace amount of water facilitated the phototransacetalization,† although 2-hydroxytetrahydropyran was

Table 1. Photosensitized transacetalization.^a

Sub- strate	Solvent	Irradiation time/h	% Substrate conversion	% Yield ^b	
				Acetal	Phenol
(1)	MeCN	30	3°	70	97
(1)	MeCNd	30	2	88	96
(1)	MeCN	30	51	79	99
(1)	MeCN-H ₂ O				
	$(100:1)^{-1}$	20	73	34 ^f	99
trans-(3)	MeCN	30	42	92	99
cis-(3)	MeCN	30	32	89	95

^a Reaction was conducted by irradiation of a mixture of the substrate, octan-1-ol, tris(2,2'-bipyridine)ruthenium(II) dichloride, and methyl viologen (MV²⁺·2Cl⁻) (100:100:3:3—5 molar ratio) with a 200 W high-pressure mercury arc at 20 °C. Concentrations of Ru(bpy)₃²⁺ and MV²⁺ were 5×10^{-3} M and 5—8 $\times 10^{-3}$ M, respectively. ^b Based on conversion. ^c No methyl viologen was added. ^d Molecular sieves 4 Å added. ^e No reaction in 10:1 MeCN-H₂O. ^t The major byproduct was 2-hydroxytetrahydropyran.

[†] MV^{2+} is insoluble in dry acetonitrile. 9,10-Dicyanoanthracene (soluble in anhydrous acetonitrile, $E_{red.}^{\dagger} = -0.80 \text{ V}$) also serves as cocatalyst though less effectively.

Scheme 1

obtained as the major side-product. Replacement of the $Ru(bpy)_{3}^{2+}$ catalyst by 4,4'- or 5,5'-bis-ethoxycarbonylated analogues retarded the reaction.

Thus redox properties of the substrate (1) $[E_{ox}^{\dagger} = 1.08 \text{ V vs.}$ standard calomel electrode (S.C.E.)], excited Ru(bpy)₃²⁺ $(E_{ox}^{\dagger} = -0.81 \text{ V})$,³ Ru(bpy)₃²⁺ $(E_{ox}^{\dagger} = 1.29 \text{ V})$,⁴ and MV²⁺ $(E_{red}^{\dagger} = -0.46 \text{ V})$ ³ balance nicely for the electron-transfer reaction. Under the present and previously discovered phenanthrene (or triphenylene)-dicyanobenzene cosensitized conditions,¹ 2-aryloxytetrahydropyrans behave basically in an identical manner, indicating operation of a common S_{ON} 1 mechanism.⁴ The overall catalytic cycle is outlined in Scheme 1.

We thank Professor D. G. Whitten, University of Rochester, for a generous supply of tris(4,4'-diethoxycarbonyl-2,2'-bipyridine)ruthenium(II) dichloride and tris(5,5'-diethoxycarbonyl-2,2'-bipyridine)ruthenium(II) bis(hexafluorophosphate).

Received, 6th May 1986; Com. 604

References

- 1 S. Hashimoto, I. Kurimoto, Y. Fujii, and R. Noyori, J. Am. Chem. Soc., 1985, 107, 1427.
- Reviews: N. Sutin and C. Creutz, Adv. Chem. Ser., 1978, 168, 1; P. J. DeLaive, T. J. Lee, H. Arubuna, H. Sprintschnik, and D. G. Whitten, *ibid.*, 1978, 168, 28; T. J. Meyer, Acc. Chem. Res., 1978, 11, 94; D. G. Whitten, *ibid.*, 1980, 13, 83; K. Kalyanasundaram, Coord. Chem. Rev., 1982, 46, 159.
- 3 C. R. Bock, J. A. Connor, A. R. Gutierrez, T. J. Meyer, D. G. Whitten, B. P. Sullivan, and J. K. Nagel, J. Am. Chem. Soc., 1979, 101, 4815.
- 4 R. W. Alder, J. Chem. Soc., Chem. Commun., 1980, 1184.