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Abstract: An efficient diastereo- and enantioselective synthesis of
4¢-quaternary 2¢-deoxy-3¢-epi-b-C-nucleosides is described em-
ploying the RAMP-hydrazone methodology to establish the first
stereocentre. Further key steps include diastereoselective nucleo-
philic 1,2-additions with Grignard and organocerium reagents.
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The synthesis of novel nucleoside analogues has attracted
increasing interest in recent years in order to study their
behaviour in oligonucleotides or their biological activi-
ty.1–9 A large number of nucleoside analogues have al-
ready been synthesised by several groups. Alongside
abundant modifications of the structure of nucleobases,1 a
wide variety of sugar analogues have also been devel-
oped, most of them severely altering the nucleoside
structure and leading to carbocyclic, acyclic, thio or aza
nucleosides.2 Nucleoside analogues with structures closer
to the natural building blocks have also been investigated.
For example, 4¢-quaternary nucleosides have been devel-
oped by Marx et al. and proved to lead to superior selec-
tivity compared to natural nucleosides when inserted into
oligonucleotides.3 Other groups have synthesised 4¢-qua-
ternary nucleosides in order to study their biological
activity4 or developed syntheses of 4¢-branched bicyclic
nucleoside analogues.5 Numerous investigations were
reported on C-nucleoside synthesis, using various ap-
proaches.6 For instance, in the studies of Kool7 and
Leumann,8 those nucleoside analogues were introduced
into oligonucleotides, which allowed them to study stack-
ing and shape-mimicking effects separately from hydro-
gen-bonding interactions occurring between natural
nucleobases.

Concerning the synthetic aspect, 4¢-quaternary 2¢-deoxy-
3¢-epi-b-C-nucleosides 8 are challenging target molecules
for asymmetric synthesis, since they require the formation
of three stereocentres, one of them quaternary, in a five-
membered ring. We were interested in synthesising these
nucleoside analogues as they combine a variety of modi-
fications, which could be of great biological interest. For
example, 3¢- or 4¢-epimers of deoxynucleosides are
expected to have a local influence on double helix con-
formation when inserted into DNA (base-flipping).9

We now wish to disclose our syntheses of the b-C-nucleo-
sides 8a and 8b, which were accomplished in 9 steps in
overall yields of 16% and 22%, respectively, starting from
2,2-dimethyl-1,3-dioxan-5-one (1)10 (Scheme 1). First of
all the RAMP-hydrazone a-alkylation methodology11

provided the tert-butyl ketoester 2 in a good yield of
57% over 3 steps and with excellent enantioselectivity (ee
≥ 99%).

A wide range of substituents R1 were incorporated into 2
by employing various Grignard reagents, the tert-butyl-
ester functionality being a good directing group for the
formation of the second stereocentre.12 The diastereomer-
ic excesses ranged from good to excellent (de = 70–98%),
and the minor diastereoisomer could easily be separated

Scheme 1 Reagents and conditions: (a) 1. RAMP, benzene, reflux;
2. t-BuLi, THF, –78 °C, then tert-butylbromoacetate, –100 °C; 3. O3,
CH2Cl2, –78 °C; (b) R1MgBr, THF, –78 °C or –100 °C; (c) 3 N HCl,
MeOH, r.t.; (d) TBSOTf, pyridine, THF, 0 °C; (e) CeCl3, R

2Li, THF,
–110 °C to –99 °C; (f) Me4NHB(OAc)3, MeCN, AcOH, –30 °C;
(g) TFA–CHCl3 (4:1), CHCl3, 0 °C.
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by column chromatography giving access to diastereo-
and enantiomerically pure alcohols 3a–e in good to excel-
lent yields (de, ee ≥ 99%). Subsequent cyclisation13 with
methanolic hydrochloric acid led to lactones 4a–e with
excellent yields in all cases, followed by transformation to
the corresponding TBS ethers 5a–e in very good to excel-
lent yields (Table 1).

For the TBS protection14 of the secondary alcohol neigh-
bouring a quaternary centre, the use of TBSOTf was nec-
essary, as reaction with TBSCl led to the mono-protected
product only, even when the reaction mixture was ex-
posed to harsh conditions (reflux in pyridine). The choice
of base was also crucial for the outcome of the reaction.
Thus, the use of commonly employed 2,6-lutidine led to
elimination, which could be suppressed by using 2,6-di-
tert-butyl pyridine as reported by Chamberlin et al.15 Fur-
ther investigations showed that the far less expensive
pyridine was sufficient to obtain the desired products.

Subsequently, nucleophilic 1,2-addition of organocerium
reagents16 on the TBS-protected lactone 5a was per-
formed.17 The cyclic hemi-acetals formed during the
course of this reaction opened to give the g-hydroxy-
ketones 6a,b in good yields. The reaction temperature
proved to be very important for the reproducibility of this
addition. On the one hand the temperature had to be kept
below –105 °C to prevent a second addition to the new
keto functionality, on the other hand the ring-opening
seemed to only occur at temperatures above –105 °C. At
lower temperature only a complex mixture of elimination
products along with the desired product was found. For
these reasons, our strategy was to perform the reaction at
temperatures below –105 °C in order to avoid double ad-
dition and then allow the mixture to warm up to –99 °C
right before quenching. This led to the satisfying results
shown in Table 2.

Reduction was then performed according to Evans et al.
with tetramethyl ammonium triacetoxy borohydride,18

which to our surprise not only led to the cyclised products
7a,b but also showed complete diastereoselectivity to-
wards the b-configuration of the C-nucleoside formed (de

≥ 99%).19 The reaction proceeded smoothly to give pro-
tected b-C-nucleosides 7a,b in good to excellent yields
(Table 2). Investigations with other reducing agents have
not resulted in a-nucleosides so far. The relative b-con-
figuration was confirmed by NOE experiments on 7a.

In the final deprotection step20 a screening of typical de-
silylating agents indicated the sensitivity of the stereocen-
tres. Among the tested reagents only trifluoroacetic acid
in chloroform resulted in complete conversion and, more
importantly, retention of all stereocentres leading to the
desired products 8a,b in good yields and excellent diaste-
reomeric and enantiomeric excesses (de, ee ≥ 99%).21

In conclusion, we have developed a highly diastereo- and
enantioselective route to 4¢-quaternary 2¢-deoxy-3¢-epi-b-
C-nucleosides, where the substituents at the 4¢-position
can vary from alkyl and allyl to aromatic. The syntheses
of two derivatives (8a,b) were completed over nine steps
in overall yields of 16% and 22%, respectively. We now
envisage to apply the SAMP auxiliary to this method in
order to synthesise 4¢-quaternary 2¢-deoxy-4¢-epi-a-C-nu-
cleosides.
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under an argon atmosphere. The resulting solution was 
cooled down to –30 °C and added to a solution of the 
hydroxyketone 6a,b in abs. MeCN (2.5 mL/mmol). The 
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the reaction with a solution of 10% Na/K-tartrate in H2O (10 
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addition of a sat. aq solution of Na2CO3. The aqueous phase 
was extracted with Et2O (100 mL/mmol) and the combined 
organic layers were washed with brine and dried over 
MgSO4. The cyclised products 7a,b were purified by column 
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(20) Typical Procedure for the Deprotection.
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(21) (2R,3R,5R)-2-(Hydroxymethyl)-2-methyl-5-(1-
naphthyl)tetrahydrofuran-3-ol (8b): mp 118 °C. IR 
(KBr): n = 3517, 3325, 3047, 2962, 2913, 2862, 1597, 1508, 
1435, 1373, 1340, 1283, 1220, 1101, 1055, 1016, 939, 913, 
860, 778, 642, 560, 490 cm–1. 1H NMR (400 MHz, CDCl3): 
d = 1.57 (s, 3 H, CH3), 2.09 (ddd, 1 H, J = 12.9, 9.3, 6.6 Hz, 
ArCHCHH), 2.42 (t, 1 H, J = 6.2 Hz, CH2OH), 2.98 (d, 1 H, 
J = 14.5 Hz, CHOH), 3.02 (ddd, 1 H, J = 12.9, 6.6, 6.3 Hz, 
ArCHCHH), 3.87 (d, 2 H, J = 6.2 Hz, CH2OH), 4.36 (dd, 1 
H, J = 14.5, 6.6 Hz, CHOH), 5.67 (dd, 1 H, J = 9.3, 6.3 Hz, 
ArCH), 7.45–7.99 (m, 7 H, ArH) ppm. 13C NMR (100 MHz, 
CDCl3): d = 22.01, 43.67, 66.92, 73.34, 79.74, 83.58, 
121.72, 123.06, 125.37, 125.42, 125.90, 127.91, 128.64, 
130.46, 133.46, 137.06 ppm. MS (EI): m/z (%) = 115 (5), 
127 (9), 128 (25), 129 (9), 141 (19), 142 (9), 152 (11), 153 
(24), 154 (18), 155 (31), 156 (9), 165 (12), 166 (10), 167 
(24), 170 (9), 183 (5), 184 (5), 209 (75), 210 (11), 227 (52), 
228 (8), 258 (100), 259 (17). [a]D

25 +26.3 (c 0.99, CHCl3). 
Anal. Calcd for C12H16O3: C, 74.39; H, 7.02. Found: C, 
74.36; H, 7.19.
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