

Tetrahedron Letters 42 (2001) 4369-4371

TETRAHEDRON LETTERS

High yield preparation of α -ketophosphonates by oxidation of α -hydroxyphosphonates with zinc dichromate trihydrate (ZnCr₂O₇·3H₂O) under solvent-free conditions

Habib Firouzabadi,* Nasser Iranpoor,* Sara Sobhani and Ali-Reza Sardarian

Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran Received 25 January 2001; accepted 27 April 2001

Abstract—Various types of α -hydroxyphosphonates were converted to α -ketophosphonates by zinc dichromate trihydrate in high yields and rates under solvent-free conditions. © 2001 Elsevier Science Ltd. All rights reserved.

α-Ketophosphonates are fascinating and versatile compounds in organic synthesis.¹ The chemical properties of α -ketophosphonates are mainly determined by the phosphorus substituents, but in general are a hybrid between ketones and secondary amides.² For instance, it is possible to derive hydrazones,³ imines,⁴ and oximes⁵ from the carbonyl function; to reduce α ketophosphonates to the corresponding αhydroxyphosphonates⁶ or use them in Wittig reactions.⁷ The C(O)-P bonds in these compounds are known to be sensitive towards hydrolysis.⁸ Therefore, handling α -ketophosphonates is not so easy and requires special precautions.⁸ The Michael-Arbuzov reaction is a general method for the preparation of α -ketophosphonates from acyl chlorides and trialkylphosphites.9 Oxidation of α -hydroxyphosphonates¹⁰ is another reaction for the preparation of α -ketophosphonates. However, a survey of the literature indicates that reports of the oxidation of α -hydroxyphosphonates are rare. Oxidation by known reagents requires long reaction times, high molar ratios of the oxidant/substrate or special treatment for the activation of the reagent.¹¹

^{*} Corresponding authors. Fax: (711) 2220027; e-mail: firouzabadi@ chem.susc.ac.ir

On the other hand, in view of economical and environmental demands, simplicity in processes and low costs, solvent-free reactions in organic synthesis have recently been receiving interest.¹² Along this line, we have reported new methods for functional group transformations.¹³

Table 1. Oxidation of α -hydroxyphosphonates to α -
ketophosphonates by zinc dichromate trihydrate at room
temperature under solvent-free conditions; comparison
with $CrO_3/Al_2O_3^{11b}$

Product 2	R-	$ZnCr_2O_7$ · $3H_2O$	$CrO_3/Al_2O_3{}^{11b}$	
		Yield ^a (%)	Time ^b (h)	Yield ^b (%)
a	C ₆ H ₅ -	95	4	89
b	$4-CH_3C_6H_4-$	95	6	85
c	4-CH ₃ OC ₆ H ₄ -	90	8	78
d	2,4,6-(CH ₃) ₃ C ₆ H ₂ -	90	_	_
e	2-ClC ₆ H ₄ -	96	6	75
f	$3-ClC_6H_4$ -	95	_	_
g	4-ClC ₆ H ₄ -	94	4	90
h	2,6-Cl ₂ C ₆ H ₃ -	95	_	_
i	$2 - O_2 NC_6 H_4$ -	95	4	70
j	$3-O_2NC_6H_4-$	90	3	85
k	$4-O_2NC_6H_4-$	90	2.5	85
1	2-naphthyl	91	4	85
m	<i>i</i> -C ₃ H ₇ -	92	-	_

^a Isolated yields, oxidant/substrate = 1:1, immediate reaction occurred.

^b Oxidant/substrate = 3:1.

Herein we report that zinc dichromate trihydrate¹⁴ is an efficient reagent for the preparation of α -ketophosphonates by oxidation of α -hydroxyphosphonates at room temperature under solvent-free conditions (Scheme 1). We have compared our results with those reported for CrO₃/Al₂O₃ (Table 1).^{11b}

As shown in Table 1, in the presence of zinc dichromate trihydrate, various (α -hydroxyphenylmethyl) phosphonates (**1a–k**) were cleanly converted into the corresponding α -ketophosphonates (**2a–k**) in excellent yields (90–96%). α -Hydroxy-2-naphthyl and alkyl phosphonates (**11,m**) were also oxidized efficiently giving the corresponding α -ketophosphonates (**21,m**) in 91–92% yields.

Comparison of the results in the presence of zinc dichromate trihydrate with those reported by CrO_3/Al_2O_3 indicated that: (1) the yields are higher; (2) the reaction occurs immediately; (3) the support for the oxidation was not required,¹⁵ and (4) the ratio of the oxidant used was less.^{16,17}

In conclusion, mild reaction conditions, high reaction rates, high yields, solventless conditions deserve to be mentioned for the present procedure and make it a useful method for the preparation of various α -ketophosphonates without requiring a large amount of the oxidant.

Acknowledgements

We thank Shiraz University Research Council and National Research Council of I.R. Iran for grant no.464 for the partial support of this work.

References

- (a) Sprecher, M.; Kost, D. J. Am. Chem. Soc. 1994, 116, 1016; (b) Burnaeva, L. M.; Romanov, S. V.; Mironov, V. F.; Konovalova, I. V.; Ivkova, G. A.; Azancheev, N. M.; Cherkasov, R. A. Russ. J. Gen. Chem. 1997, 67, 1310; (c) Breuer, E.; Moshe, R. Isr. J. Chem. 1986, 27, 45; (d) Telan, L. A.; Poon, C.-D.; Evans, Jr., S. A. J. Org. Chem. 1996, 61, 7455.
- Afarinkia, K.; Vinader, M. V. In Organic Functional Group Transformations; Moody, C. J., Ed. The synthesis of acyl phosphorus, -arsenic, -antimony or -bismuth functions.; Elsevier: London, 1995; pp. 393–407.
- Scherer, H.; Hartmann, A.; Regitz, M.; Tunggal, B. D.; Gunther, H. Chem. Ber. 1972, 105, 3357.
- (a) Krzyzanowska, B.; Pilichowska, S. Pol. J. Chem. 1988, 62, 165; (b) Karaman, R.; Goldblum, A.; Breuer, E.; Leader, H. J. Chem. Soc., Perkin Trans. 1 1989, 765.
- Breuer, E.; Karaman, R.; Golblum, A.; Gibson, D. J. Chem. Soc., Perkin Trans. 1 1988, 3047.
- 6. (a) Gajda, T. Tetrahedron: Asymmetry 1994, 5, 1965;
 (b) Meier, C.; Laux, W. H. G.; Bats, J. W. Liebigs Ann. 1995, 1963.

- Yamashita, M.; Kojima, M.; Yoshida, H.; Ogata, T.; Inokawa, S. *Bull. Chem. Soc. Jpn.* **1980**, *53*, 1625.
- (a) Ackerman, B.; Jordan, T. A.; Eddy, C. R.; Swen, D. J. Am. Chem. Soc. 1956, 78, 4444; (b) Kluger, R.; Pick, D. C.; Chin, J. Can. J. Chem. 1978, 56, 1792; (c) Jugelt, W.; Andreae, S.; Schubert, G. J. Prackt. Chem. 1971, 83.
- (a) Berlin, K. D.; Hellwege, D. M.; Nagabhushanam, M. J. Org. Chem. 1965, 1265; (b) Berlin, K. D.; Taylor, H. A. J. Am. Chem. Soc. 1964, 86, 3862.
- (a) Texier-Boullet, F.; Foucaud, A. Synthesis 1982, 916;
 (b) Baraldi, P. G.; Guarneri, M.; Moroder, F.; Polloni, G. P.; Simoni, D. Synthesis 1982, 11, 653;
 (c) Sardarian, A. R.; Kaboudin, B. Synth. Commun. 1997, 27, 543.
- (a) Smyth, M. S.; Ford, Jr., H.; Burke, Jr., T. R. *Tet-rahedron Lett.* **1992**, *33*, 4137; (b) Kaboudin, B. *Tetra-hedron Lett.* **2000**, *41*, 3169; (c) Liao, Y.; Shabany, H.; Christopher, D. S. *Tetrahedron Lett.* **1998**, *39*, 8389.
- 12. Tanaka, K.; Toda, F. Chem. Rev. 2000, 100, 1025 and references cited therein.
- (a) Firouzabadi, H.; Karimi, B.; Abbassi, M. J. Chem. Res. (S) 1999, 236; (b) Firouzabadi, H.; Iranpoor, N.; Zolfigol, M. A. Synth. Commun. 1998, 28, 1179.
- Firouzabadi, H.; Sardarian, A. R.; Moosavipoor, H.; Afshari, G. M. Synthesis 1986, 285.
- 15. In our laboratory, we tried similar oxidations with unsupported CrO_3 . The results showed that this reagent was sluggish for this aim and a messy reaction mixture was obtained.
- 16. Typical procedure for the preparation of α -ketophosphonates from 1-hydroxyphosphonates: A mixture of the α hydroxyphosphonate 1 (5 mmol) and zinc dichromate trihydrate¹⁴ (5 mmol) was ground together in a mortar with a pestle. The reaction occurred immediately and the mixture was washed with carbon tetrachloride (4× 15 ml) and dried over anhydrous Na₂SO₄. The solvent was evaporated to give the desired crude product. The pure product(s) were obtained by vacuum distillation in 90–96% yields (Table 1).
- 17. Spectral data of some α -ketophosphonates: 2a [¹H NMR (CDCl₃, TMS): δ 1.37–1.68 (t, 6H, J_{HH} =7 Hz, 2-OCH₂<u>CH₃</u>), 4.08–4.28 (dq, 4H, $J_{POCH} = 7.1$ Hz, $J_{HH} =$ 7 Hz, 2-OCH₂CH₃), 7.28-7.6 (m, 3H), 8.03-8.25 (m, 2H) ppm; IR (neat): v 1660 (C=O), 1250 (P=O) cm⁻¹; MS: M⁺ (242)]. **2b** [¹H NMR (CDCl₃, TMS): δ 1.29– 1.42 (t, 6H, J_{HH} =7 Hz, 2-OCH₂<u>CH₃</u>), 2.35 (s, 3H, -CH₃), 4.11–4.16 (dq, 4H, J_{POCH} =7.1 Hz, J_{HH} =7 Hz, 2-OCH₂CH₃), 7.12–7.21 (m, 2H), 8.04–8.07 (m, 2H) ppm; IR (neat): v 1650 (C=O), 1260 (P=O) cm⁻¹; MS: M⁺ (256)]. **2c** [¹H NMR (CDCl₃, TMS): δ 1.11–1.29 (t, 6H, $J_{\rm HH} = 7$ Hz, 2-OCH₂<u>CH₃</u>), 3.80 (s, 3H, -CH₃), 3.90-4.10 (dq, 4H, $J_{POCH} = 7.1$ Hz, $J_{HH} = 7$ Hz, 2-OCH₂CH₃), 6.84–6.90 (m, 2H), 7.42–7.50 (m, 2H) ppm; IR (neat): v 1650 (C=O), 1265 (P=O) cm^{-1} ; MS: M⁺ (272)]. 2d [¹H NMR (CDCl₃, TMS): δ 1.25–1.32 (t, 6H, $J_{\rm HH} = 7$ Hz, 2-OCH₂<u>CH₃</u>), 2.23 (s, 6H, 2-CH₃, 6-CH₃), 2.27 (s, 3H, 4-Me), 4.06–4.17 (dq, 4H, $J_{POCH} = 7.1$ Hz, $J_{\rm HH} = 7$ Hz, 2-O<u>CH</u>₂CH₃), 6.83 (s, 2H) ppm; IR (neat): v 1660 (C=O), 1250 (P=O) cm⁻¹; MS: M⁺ (284)]. 2g [¹H NMR (CDCl₃, TMS): δ 1.13–1.42 (t, 6H, $J_{\rm HH}$ =7 Hz, 2-OCH₂CH₃), 4.15–4.33 (dq, 4H, $J_{POCH} = 7.1$ Hz, $J_{HH} =$ 7 Hz, 2-OCH₂CH₃), 7.47–7.50 (m, 2H), 8.21–8.24 (m, 2H) ppm; IR (neat): v 1660 (C=O), 1260 (P=O) cm⁻¹;

MS: M⁺ (277), M⁺+2 (279)]. **2h** [¹H NMR (CDCl₃, TMS): δ 1.04–1.24 (t, 6H, J_{HH} =7 Hz, 2-OCH₂<u>CH₃</u>), 3.95–4.23 (dq, 4H, J_{POCH} =7.1 Hz, J_{HH} =7 Hz, 2-O<u>CH₂</u>CH₃), 6.90–7.09 (m, 3H) ppm; IR (neat): ν 1690 (C=O), 1260 (P=O) cm⁻¹]. **2i** [¹H NMR (CDCl₃, TMS): δ 1.19–1.27 (t, 6H, J_{HH} =7 Hz, 2-OCH₂CH₃), 4.08–4.18 (dq, 4H, J_{POCH} =7.1 Hz, J_{HH} =7 Hz, 2-OCH₂CH₃), 7.42–7.47 (m, 1H), 7.64–7.70 (m, 1H), 7.94–8.01 (m, 2H) ppm; IR (neat): *v* 1650 (C=O), 1250 (P=O) cm⁻¹; MS: M⁺ (287)].