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Abstract  

In this study, five new biscoumarin derivatives (1~5) were synthesized and compound 4 inhibited the 

proliferation of the bladder urothelial cells (J82 cell line) obviously after 48 hours treatment at different 

concentration (1, 5 and 10 µmol/L), and J82 cells were predominantly induced to apoptotic cell death after 

compound 4 treatment. Morphologic changes of bladder urothelial cancer cells were also observed under 

transmission electron microscopy (TEM) after compound 4 treatment. In addition, compound 4 had much less 

toxicity to human umbilical vein endothelial cells. To explore the possible anti-cancer mechanism of compound 4, 

two classical intramolecular O—H···O hydrogen bonds (HBs) in their structures and the corresponding HB 

energies were performed with the density functional theory (DFT) [B3LYP/6-31G*] method. Anti-bladder cancer 

activity of compound 4 is possible due to the intramolecular weakest HB energies. 

Key Words  Biscoumarin, Crystal, Bladder urothelial cancer, Apoptosis, Chemotherapy 

 

1. Introduction 

Bladder urothelial cancer is diagnosed at an increasing rate in the world, which is the second most common 

urologic malignancy, while the clinical outcomes remain highly controversial [1-3]. Treatment for the bladder 

urothelial cancer takes different approaches depending on the conditions, and chemotherapy is one of the 

important treatments, which may be used before surgery, after surgery, or instead of surgery for those cases in 

which surgery is considered unsuitable [4-6]. However, chemotherapeutic agents against bladder urothelial cancer 

are still limited, more novel anti-cancer agents with great selectivity and specificity need to be developed for 

bladder urothelial cancer treatment.  

    Biscoumarins have received considerable attention in the past few years for their versatile biological and 

medical properties, such as antioxidant, anti-inflammatory, antibacterial, and anticancer activities [7-9]. It was 

reported that biscoumarin derivatives can strongly inhibit tubulin aggregation and played an efficient role against 

cancer, so the cancer cells were able to prevent progression through the cell cycle. Other mechanism of 

anti-cancer activity was due to the antiangiogenesis and promotion of apoptosis [10-12]. These results indicated that 

coumarin derivatives might represent interesting novel drug candidates. 

In this work, we synthesized five new biscoumarin derivatives, namely, 



  

3,3′-benzylidene-bis-(4-hydroxycoumarin) (1), 3,3′-(2-nitrobenzylidene)-bis-(4-hydroxycoumarin) (2), 

3,3′-(3-nitrobenzylidene)-bis-(4-hydroxycoumarin) (3), 

3,3′-(2-chloro-5-nitrobenzylidene)-bis-(4-hydroxycoumarin) (4) and 

3,3′-(3-nitro-4-hydroxybenzylidene)-bis-(4-hydroxycoumarin) (5) (Fig. 1), and then evaluated their anti-cancer 

activities on two human bladder urothelial cell lines. In addition, the cell cycle analysis and apoptosis change 

induced by compound treatment were also observed.  
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Fig. 1  Chemical structures of compounds 1~5 

2. Experimental   

2.1  Apparatus and materials  
IR spectra (400-4000 cm-1) were obtained using a Brucker Equinox-55 spectrophotometer. 1H NMR spectra 

were obtained using a Varian Inova-400 spectrometer (at 400 MHz). Mass spectra were obtained using a 

micrOTOF-Q II mass spectrometer. The melting points were taken on a XT-4 micro melting apparatus, and the 

thermometer was uncorrected.  

The bladder urothelial carcinoma cell line J82 and human umbilical vein endothelial cells were purchased 

from ATCC (Manassas, VA, USA). Cells were initially transferred into uncoated plastic tissue plates and were 

grown in Eagle’s minimal essential medium (EMEM) with Earle’s balanced salt solution (BSS) and 2 mM 

L-glutamine, modified to contain 1.0 mM sodium pyruvate, 0.1 mM nonessential amino acids, 1.5 g/L sodium 

bicarbonate, and 10% FBS. Cells were incubated at 37 °C in 95% air/5% CO2. Medium was refreshed 3 times per 

week, and the cancer cells were harvested when they formed a confluent monolayer on the tissue plate.  

2.2  Synthesis and characterization of compounds 1~5  
Compounds 1~5 were synthesized according to a reported procedure [13]. A mixture of benzaldehyde 

(2-nitrobenzaldehyde, 3-nitrobenzaldehyde, 2-chloro-5-nitrobenzaldehyde and 3-nitro-4-hydroxybenzaldehyde) 

(10 mmol) and 4-hydroxycoumarin (20 mmol) was dissolved in 100 mL of EtOH. A few drops of piperidine were 

added, and the mixture was stirred for 3 h at room temperature. After reaction completion as determined by TLC, 



  

water was added until precipitation occurred. After filtering the precipitates, they were sequentially washed with 

ice-cooled water and ethanol and then dried in a vacuum.  

3,3′-Benzylidene-bis-(4-hydroxycoumarin) (1): m.p. 208-209 °C. IR (KBr pellet cm-1): 3446 (OH), 1652 

(C=O), 1615 (C-O), 1572 (C=C) cm-1. 1H NMR (CDCl3, δ, ppm): 11.528 (s, 1H, OH), 11.299 (s, 1H, OH), 

7.994-8.080 (q, 2H), 7.606-7.649 (m, 2H), 7.215-7.421 (m, 9H), 6.104 (s, 1H, CH). HRMS (ESI+): m/z: calcd for 

C25H16O6: 435.0839 [M+Na+]; found: 435.0899.  

3,3′-(2-Nitrobenzylidene)-bis-(4-hydroxycoumarin) (2):  m.p. 218-219 °C. IR (KBr pellet cm-1): 3446 

(OH), 1652 (C=O), 1615 (C-O), 1520 (C=C) cm-1. 1H NMR (CDCl3, δ, ppm): 11.550 (s, 1H, OH), 11.219 (s, 1H, 

OH), 7.978-8.073 (m, 2H), 7.612-7.658 (m, 3H), 7.540-7.582 (m, 1H), 7.386-7.464 (m, 6H), 6.628 (s, 1H, CH). 

HRMS (ESI+): m/z: calcd for C25H15NO8: 480.0690 [M+Na+]; found: 480.0611.  

3,3′-(3-Nitrobenzylidene)-bis-(4-hydroxycoumarin) (NBH): m.p. 220-221 °C. IR (KBr pellet cm-1): 3446 

(OH), 1652 (C=O), 1615 (C-O), 1555 (C=C) cm-1. 1H NMR (CDCl3, δ, ppm): 11.579 (s, 1H, OH), 11.384 (s, 1H, 

OH), 8.137-8.162 (m, 1H), 8.070-8.104 (t, 2H), 7.990-8.008 (d, 1H), 7.651-7.690 (t, 2H), 7.568-7.591 (m, 1H), 

7.496-7.536 (t, 1H), 7.385-7.453 (m, 4H), 6.129 (s, 1H, CH). HRMS (ESI+): m/z: calcd for C25H15NO8: 480.0690 

[M+Na+]; found: 480.0689.  

3,3′-(2-Chloro-5-nitrobenzylidene)-bis-(4-hydroxycoumarin) (CBH): m.p. 150-151 °C. IR (KBr pellet cm-1): 

3489 (OH), 1684 (C=O), 1623 (C-O), 1520 (C=C) cm-1. 1H NMR (CDCl3, δ, ppm): 11.752 (s, 1H, OH), 11.006 (s, 

1H, OH), 8.359-8.365 (t, 1H), 8.064-8.144 (m, 3H), 7.640-7.683 (m, 2H), 7.533-7.555 (d, 1H), 7.402-7.438 (t, 

4H), 6.192 (s, 1H, CH). HRMS (ESI+): m/z: calcd for C25H14ClNO8: 514.0300 [M+Na+]; found: 514.0321.  

3,3′-(3-Nitro-4-hydroxybenzylidene)-bis-(4-hydroxycoumarin) (NHH): m.p. 238-239 °C. IR (KBr pellet 

cm-1): 3251 (OH), 1655 (C=O), 1582 (C-O), 1536 (C=C) cm-1. 1H NMR (CDCl3, δ, ppm): 11.593 (s, 1H, OH), 

11.396 (s, 1H, OH), 10.545-10.558 (d, 1H), 7.944-8.108 (m, 3H), 7.686 (s, 2H), 7.402-7.466 (m, 4H), 7.287 (s, 

1H), 7.142-7.176 (q, 1H), 6.046 (s, 1H, CH). HRMS (ESI+): m/z: calcd for C25H15NO9: 496.0639 [M+Na+]; found: 

496.0632.  

2.3  Crystal structure determination 
For X-ray diffraction experiments, single crystals of compound 4 were both grown from methanol. The X-ray 

diffraction data were collected on a Bruker SMART APEX II CCD diffractometer equipped with a graphite 

monochromated Mo Kα radiation (λ = 0.71073 Å) by using the ω-2θ scan technique at room temperature. The 

structure was solved by direct methods using SHELXS-97 and refined using the full-matrix least squares method 

on F2 with anisotropic thermal parameters for all non-hydrogen atoms by using SHELXL-97 [14]. Hydrogen atoms 

were generated geometrically. The crystal data and details concerning data collection and structure refinement are 

given in Table 1. Molecular illustrations were prepared using the XP package. Parameters in CIF format are 

available as Electronic Supplementary Publication from Cambridge Crystallographic Data Centre. 

 

Table 1  Crystal data, data collection and structure refinement of compound 4 

Formula 

Mr 

Temperature / K 

Crystal system 

Space group 

a / Å 

b / Å 

c / Å 

α / ° 

β / ° 

γ / ° 

C25H14ClNO8 

491.0408 

293(2) 

Triclinic 

Pī 

9.7912(9) 

11.2742(8) 

12.0934(13) 

64.872(9) 

79.063(9) 

84.199(7) 



  

V / Å3 

Z 

Dcalc / g·cm-3 

μ(Mo Kα) / mm-1 

θ range / ° 

Reflections collected 

No. unique data[R(int)] 

No. data with I ≥ 2σ(I) 

R1
 

ωR2(all data) 

CCDC 

1186.36(19) 

4 

1.506 

0.221 

2.60 to 25.00 

7797 

4179 

3229[0.0210] 

0.0657 

0.2044 

1009072 

 
2.4  Quantum chemical calculations 

All calculations were carried out using the Gaussian 09 package [15]. Density functional theory (DFT), 

Becke’s three-parameter hybrid function (B3LYP), and LYP correlation function were used to fully optimize all 

the geometries on the energy surface without constraints. Frequency calculations using the same basis sets have 

been performed to confirm that the stationary points are minima (zero imaginary frequencies) on the potenial 

energy surface. To obtain precise results that are in conjunction with experimental results, three basis sets, namely 

6-31G*, 6-31+G**, and 6-311G*, were tested. Frequency calculations at the B3LYP (with basis sets 6-31G*) 

level of theory were carried out to confirm stationary points as minima and to obtain the zero-point energies and 

the thermal correlation data at 1 atm and 298 K.  

2.5  Anti-cancer and cytotoxic activity assay  
The anti-cancer activity of compounds to the bladder urothelial carcinoma cells (J82 cell line), and the in 

vitro cytotoxicity of compound to the human umbilical vein endothelial cells (HUVECs) was determined by 

3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) staining as described previously [16]. 

Briefly, cells (5×103 cells/well) were seeded in a 96-well plate with 100 μL EMEM media with 20% fetal bovine 

serum (FBS) in every well for 12 hours, and then treated with or without compounds at various concentrations for 

24 or 48 hours. After treatment, MTT solution (final concentration, 0.5%) was added and cells were incubated for 

another 4 hours at 37°C. 150 μL DMSO was added to each well after removal of the supernatant and the 

absorbance at 490 nm was measured with a microplate reader.  

2.6  Detection of apoptosis by flow cytometry 

The apoptotic ratios of cells were determined with the Annexin V-FITC apoptosis detection kit (Sigma, St. 

Louis, MO, USA) [17]. Briefly, after 48 hours compound 4 treatment, the cells were collected and washed twice 

with cold PBS buffer, resuspended in 100 mL of binding buffer, incubated with 5 mL of Annexin V conjugated to 

FITC and 10 mL PI for 15 min at room temperature, and analyzed by flow cytometry. Cells treated with DMSO 

were used as the negative control.  

2.7  Transmission electron microscopy (TEM) observation  
Bladder urothelial cancer cells were seeded and grown at 5×107/ml in three flasks. Cells after treated with 

compound 1 (1, 5 and 10 µmol/L) were harvested and washed with 1xPBS twice, and then added to 2.5% 

glutaraldehyde fixative for microtome sectioning using ultramicrotome (LKB-V; JEOL Co; Japan). TEM was 

performed with a Transmission Electron Microscope (JEM-2000EX; JEOL Co; Japan).  

3  Results  

3.1  Molecular structure  
The crystal structure of compound 4 is given in Fig. 2. The selected bond lengths, bond angles and partial 

values of torsional angles are listed in Table 2. From the diagram of the asymmetric unit including the atomic 



  

numbering scheme of compound 4, we can see an ethanol solvent molecule incorporated in the asymmetric unit. 

The title compound is a 4-hydroxycoumarin dimer, consisting of two monomeric building blocks of 

4-hydroxycoumarin and a 2-chloro-5-nitrophenyl ring on the central methylene linker. Two 4-hydroxycoumarin 

residues arranged in a position that permits the formation of two classical intramolecular hydrogen bonds between 

a hydroxyl group of one coumarin fragment and a lacton carbonyl group of another coumarin fragment help 

stabilize the whole structure [d(O3-O4) = 2.575 Å and d(O1-O6) = 3.429 Å].  

 
Fig. 2  Molecular structure of 3,3′-(2-chloro-5-nitrobenzylidene)-bis-(4-hydroxycoumarin) (4).   

3.2  Quantum chemical calculations 
3.2.1  Geometric parameters of compounds 1~5 

The fully optimized molecular structures of compounds 1~5 with atomic numbering calculated at B3LYP 

level of theory are shown in Fig. 3. For compound 4, selected calculated geometric parameters under three 

different basis sets (6-31G*, 6-31+G**, and 6-311G*) and experimental geometric parameters are presented in 

Table 2.  
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Fig. 3  Schematic presentation of compounds 1~5 

 

As seen in Table 2, the calculated geometric parameters of compound 4 agree with available experimental 

data. Under three different basis sets, the maximum deviation of the selected bond lengths and bond angles are 

very close; the average discrepancy of the selected bond lengths between theoretical and experimental data is less 

than ±0.02Å, and the average discrepancy of the selected bond angles is less than ±2°. B3LYP/6-31G* exhibited 

sufficient agreement with experimental data and lower computational cost, so further theoretical study was 

performed at this level.  



  

Table 2  Experimental and calculated parameters of the selected bond lengths and bond angles of 

3,3′-(2-chloro-5-nitrobenzylidene)-bis-(4-hydroxycoumarin) (4).  

Name definition X-ray 6-31G* 6-31+G** 6-311G* 

R(C19＝O4) 

R(C1＝O1) 

R(C1-O2) 

R(C9-O2) 

R(C19-O5) 

R(C18-O5) 

R(C10-C20) 

A(C1-C2-C10) 

A(C3-C2-C10) 

A(C10-C11-C19) 

A(C10-C11-C12) 

A(C2-C10-C11) 

A(C2-C10-C20) 

A(C11-C10-C20) 

D(C3-C2-C10-C11) 

D(C2-C10-C11-C19) 

D(C1-C2-C10-C20) 

D(C19-C11-C10-C20) 

1.221 

1.205 

1.370 

1.374 

1.358 

1.370 

1.525 

115.33 

125.55 

120.46 

119.94 

113.33 

115.24 

113.45 

56.57 

98.57 

104.79 

40.32 

1.232 

1.233 

1.370 

1.368 

1.372 

1.367 

1.539 

114.05 

126.24 

119.91 

120.73 

112.18 

114.66 

116.95 

62.11 

102.87 

102.23 

45.22 

1.235 

1.236 

1.367 

1.370 

1.370 

1.369 

1.540 

114.05 

126.41 

119.77 

121.01 

111.97 

115.18 

116.38 

62.34 

102.33 

102.67 

45.33 

1.224 

1.226 

1.369 

1.367 

1.372 

1.365 

1.538 

113.80 

126.43 

119.35 

121.19 

112.02 

115.02 

116.41 

61.22 

103.45 

101.33 

46.12 

 

3.2.2  Estimation of the single and total HB energies in compounds 1~5 

To obtain single and total HB energies of the five compounds, structure optimization was performed to 

elucidate stable PES structures.  

We took compound 4 for example to estimate single and total HB energies. The global minimum structure is 

stabilized by two HBs (4ab); however, two higher energy structures is stabilized by one HB (4a or 4b) 

respectively.  

The relative energies of different structures were calculated to estimate the strengths of the HBs formed. The 

O6—H6···O1 HB energy was estimated from the energy difference between 4ab and 4a, 

coor coor
6 6 4ab 4aE(O H ) E E1⎯ …Ο = − , calculated to be -42.905921 kJ/mol (Table 3). 4a is a global minimum 

structure with one HB (O3—H3···O4). The O3—H3···O4 HB energy was estimated from the energy difference 

between 4ab and 4b, coor coor
3 3 4 4ab 4bE(O H ) E E⎯ …Ο = − , calculated to be -50.231066 kJ/mol (Table 3). 4b was 

obtained from the global minimum structure, but H3 was rotated around the C3—O3 bond until O3—H3···O4 HB 

rupture occurred [18, 19]. The HB energies obtained predicted that O3—H3···O4 HB is stronger than O6—H6···O1, 

which is consistent with the fact that the distance of O3—O4 is greatly shorter than that of O6—O1. The total HB 

energy in compound 4 was estimated to be -93.136987 kJ/mol by the equation coor coor coor
4ab 4a 4b2E (E E )− + (Table 3). 

For compounds 1~3 and compound 5, their total HB energies are -118.4546835, -118.215763, -115.5666335 

and -120.3450435 kJ·mol-1, respectively (Table 3). 

 



  

Table 3  Total electronic energies (in hartree) and HB energies (in kJ/mol) of hydrogen bonded conformers of 

compounds 1~5 calculated at B3LYP/6-31G* level of theory.  

System Total electronic energiesa E(O6—H6···O1) E(O3—H3···O4) E(total HB) 

1ab -1413.328042 

  

-118.4546835 

1a -1413.308121 -52.3025855 

  

1b -1413.302846 

 

-66.152098 

 

2ab -1617.817382 

  

-118.215763 

2a -1617.799287 -47.5084225 

  

2b -1617.790451 

 

-70.7073405 

 

3ab -1617.827653 

  

-115.5666335 

3a -1617.807773 -52.19494 

  

3b -1617.803516 

 

-63.3716935 

 

4ab -2077.424463 

  

-93.136987 

4a -2077.408121 -42.905921 

  

4b -2077.405331 

 

-50.231066 

 

5ab -1567.108786 

  

-120.3450435 

5a -1567.088785 -52.5126255 

  

5b -1567.08295 

 

-67.832418 

 

a ZP corrected. 

 

3.3  Effect of compounds on the viability of bladder urothelial cancer cells 
After treatment with compounds 1~5 (0.1, 1, 5 and 10 µmol/L) for 48 h, cell viability was decreased in 

bladder urothelial cell line J82 at 1, 5 and 10 µmol/L significantly(Table 4), and compound 4 showed the most 

potent anti-cancer activities on the J82 cells. A probity analysis of the dose–response functions showed the IC50 

value of compound 4 was 7.36±2.47µmol/L.  

Table 4  Effect of compounds 1~5 on the J82 cell viability 

Compounds 

(µmol/L) 

Value relative to control (%) 

0.1  1 5 10 
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coumarin derivative could induce the apoptosis and inhibit proliferation in the other cancers such as lung cancer 

and colon cancer [22, 23].  

X-ray structural analysis also showed that all the compounds were stabilized by two asymmetrical 

intramolecular O—H···O HBs, which were considered as important factors in assisting the molecule to attain the 

correct configuration for biological activity [22, 23]. Our study also firstly demonstrated that the energy of hydrogen 

bonds in compounds 1~5 were in agreement with their anti-proliferation activity in vitro. The total HB 

stabilization energies in compounds 1~5 were estimated to be -118.4546835, -118.215763, -115.5666335, 

-93.136987, -120.3450435 kJ/mol, respectively. These values suggest that the most potent anti-cancer activity in 

compound 4 was consistent with its weakest HB strengths. 

5.  Conclusion 

Taken together, our study demonstrated the in vitro therapeutic effect of biscoumarin derivatives on human 

bladder urothelial cancer J82 cell line, suggesting that biscoumarin derivative is a potential therapeutic drug for 

bladder urothelial cancer. Furthermore, biscoumarin derivatives can inhibit bladder urothelial cancer cells growth 

through anti-proliferation and induce apoptosis. In compounds 1~5, compound 4 had the most potent anti-cancer 

efficiency, possibly because two strong electron-withdrawing groups (NO2 and Cl) on the phenyl ring further 

weakens the HB strengths. However, it will be beneficial and necessary for further study to reveal the underlying 

mechanism and study the effect in vivo.  
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Highlights 

 

1． Five new biscoumarin derivatives (1~5) were synthesized.  

2． Their anti-cancer activities on two human bladder urothelial cell lines were evaluated. 

3． The cell cycle analysis and apoptosis change of the compounds were also observed.  

4． The HB energies of compounds 1~5 were calculated.  

 


