dioxides 3 by reacting chlorosulfonyl isocyanate (2) with suitably substituted 2-hydroxybenzaldehydes and 2-hydroxyacetophenones or -benzophenones 1.

, 3	R	X¹	X ²	1, 3	R	Χ¹	X ²	-
	H H CH ₃ CH ₃	H Cl H Cl	Н Н Н Н	e f g h	CH ₃ C ₆ H ₅ C ₆ H ₅ C ₆ H ₅	Cl H Cl Cl	CI H H CI	-

Reaction of chlorosulfonyl isocyanate (2) with 2-hydroxybenzal-dehydes (1a, b), 2-hydroxyacetophenones (1c-e), and 2-hydroxybenzophenones (1f-h) in toluene at 100-105 °C gave the corresponding benzoxathiazines 3 in yields of 66-83% (Table).

There is only one method reported for the synthesis of the above compounds^{2,3,4} which involves the condensation of 2-hydroxy-acetophenones and 2-hydroxybenzophenones with large excess of sulfamide. The reaction of 2-hydroxyacetophenone with sulfamide gave 4-methyl-1,2,3-benzoxathiazine 2,2-dioxide³ in 42% yield, whereas with the present method 3c is obtained in 68% yield.

The experimental simplicity and the commercial availability of chlorosulfonyl isocyanate make the present method convenient and useful for the preparation of 1,2,3-benzoxathiazine 2,2-dioxides 3.

1,2,3-Benzoxathiazine 2,2-Dioxides 3; General Procedure:

To a stirred solution of the 2-hydroxy compound 1 (0.046 mol) in toluene (40 ml) at $100-105\,^{\circ}\mathrm{C}$ is added chlorosulfonyl isocyanate (2; 4 ml, 0.046

A Facile Synthesis of 1,2,3-Benzoxathiazine 2,2-Dioxides

Ahmed Kamal, P. B. Sattur

Regional Research Laboratory, Hyderabad-500009, India

In earlier studies, we reported the reactions of the powerful electrophilic reagent, chlorosulfonyl isocyanate, with substituted 2-aminobenzophenones leading to 4-phenyl-2-(1H)-quinazolinones. This work prompted us to investigate further applications of this reagent for the synthesis of e.g. 1,2,3-benzoxathiazine 2,2-

Table. 1,2,3-Benzoxathiazine 2,2-Dioxides (3a-h)

Prod- uct	Yield [%]	m.p. [°C] (Lit. m.p.)	Molecular formula ^a	1.R. (KBr) ν [cm ⁻¹]	'H-N.M.R. (CDCl ₃) δ [ppm]
Ba	73	92–94°	C ₇ H ₅ NO ₃ S (183.2)	1590, 1335, 1130	7.3–8.1 (m, 4H); 8.73 (s, 1H)
Bb	81	142–143°	$C_7H_4CINO_3S$ (217.6)	1595, 1335, 1120	7.3-8.0 (m, 3 H); 8.95 (s, 1 H)
3c	68	119-120° (119-121°) ³	$C_8H_7NO_3S$ (197.2)	1590, 1340, 1115	2.76 (s, 3 H); 7.3–8.1 (m, 4 H)
3d	66	134–136°	$C_8H_6CINO_3S$ (231.6)	1590, 1345, 1120	2.74 (s, 3 H); 7.5–8.2 (m, 3 H)
3e	68	146–148°	C ₈ H ₅ Cl ₂ NO ₃ S (266.1)	1600, 1350, 1120	2.71 (s, 3 H); 7.60 (d, 1 H, $J=2$ Hz); 7.73 (d, 1 H, $J=2$ Hz)
3f	72	115-116° (115-116°) ⁴	C ₁₃ H ₉ NO ₃ S (259.3)	1595, 1340, 1125	bb
3g	83	158-159° (156-165°) ⁴	C ₁₃ H ₈ ClNO ₃ S (293.7)	1600, 1345, 1125	7.5 (s, 1 H); 7.7–8.0 (m, 7 H)
3h	75	167–168°	$C_{13}H_7Cl_2NO_3S$ (328.2)	1605, 1340, 1120	b

^a The microanalyses were in satisfactory agreement with the calculated values: C, ± 0.28 ; H, ± 0.17 ; N, ± 0.27 .

^b Aromatic multiplet.

mol) in toluene (5 ml) over a period of 20 min. Stirring is continued for 3 h at this temperature. The toluene is then removed under vacuum and the residue is added to cold water (50 ml). The solid is filtered, washed with water, and recrystallized from ethanol/methanol to give the desired benzoxathiazine 2,2-dioxide 3 (Table).

Received: October 20, 1980

¹ A. Kamal, K. Rama Rao, P. B. Sattur, Synth. Commun. 10, 799 (1980).

² J. B. Wright, J. Org. Chem. **30**, 3960 (1965).

³ Netherlands Patent Appl. 6604032, Upjohn Co. (1966); C. A. 66, 46440 (1967).

⁴ British Patent 1073 836, Upjohn Co. (1967); C. A. 67, 90818 (1967).