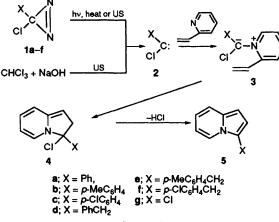
Synthesis of 3-Substituted Indolizines from the Reaction of Chlorocarbenes with 2-Vinylpyridine


Roland Bonneau, a Yuri N. Romashin, b Michael T. H. Liu*b and Spenser E. MacPherson b

URA 348 du CNRS, Laboratoire de Chimie Physique A, Universite de Bordeaux 1, 33405 Talence Cedex, France
Department of Chemistry, University of Prince Edward Island, P.E.I., Canada C1A 4P3

3-Substituted indolizines have been obtained in a one-step procedure from the reaction of chlorocarbenes with 2-vinylpyridine.

Indolizine has a delocalized 10 π -electron aromatic structure which has a theoretical and practical interest. Most of the work on indolizine has been concerned with the search for drugs and for liquid-screening agents in photographic emulsions.^{1,2} Substituted indolizines can be obtained by the reaction of pyridinium ylides with ethylenic compounds to form dihydroindolizines which readily oxidize to the aromatic system.³ We report here a facile synthesis of 3-substituted indolizines from a variety of chlorocarbenes and 2-vinylpyridine under photolytic, thermal and ultrasound conditions.

The reaction of singlet carbene such as arylchlorocarbene with pyridine to form pyridinium ylide can be envisaged as a Lewis acid-base reaction between the vacant 2p-orbital of the carbene and the non-bonding electrons pair of the nitrogen atom. As expected, these reactions have been found to be very fast and close to diffusion controlled.⁴ Typical reaction rate constants have been reported, $k = 10^{8}$ - 10^{10} dm³ mol⁻¹ s⁻¹. The absorption spectra of these ylidic species have been well

Scheme 1

characterized by laser flash photolysis studies.⁵ Their absorption at long wavelength (λ 400–600 nm), their long lifetimes ($\tau \sim 10^{-6}$ –10⁻⁴ s) and their high extinction coefficients⁵ render them excellent probes in the studies of carbene dynamics.

Our method for the synthesis of 3-substituted indolizine 5 is based on the reaction of electrophilic chlorocarbene, 2, with 2vinylpyridine. Since the vinyl double bond attached α to an sp²-hybridized ring nitrogen is electron deficient, the carbene attacks the lone pair of the nitrogen atom rather than the vinyl double bond. Intramolecular 1,5-dipolar cyclization of the resulting pyridinium ylide, 3, yields dihydroindolizine, 4. Hydrogen chloride elimination from 4 gives 3-substituted indolizine 5 (Scheme 1).

Arylchlorocarbenes 2a-c can be generated from the photolysis, thermolysis and ultrasound (US) irradiation of the corresponding arylchlorodiazirines 1a-c.⁶ Benzylchlorocarbenes 2d-f can be generated from photolysis and thermolysis of the corresponding benzylchlorodiazirines 1d-f,⁷ which are stable to US. The generation of dichlorocarbene is based on the action of US on the stirred NaOH–CHCl₃ solid–liquid system.⁸ The chlorocarbenes 2 generated in the above procedures react rapidly with 2-vinylpyridine to give 4. In all cases, elimination of HCl from 4 to give 5 is very rapid since no trace of 4 was found. Yields of indolizines 5 are presented in Table 1, as well as spectral data which compare well with those previously reported.⁹

In general, arylchlorocarbenes **2a–c** generated from the photolysis of diazirines **1a–c** ($\lambda = 350$ nm) gave low yields of indolizines **5a–c**. This is attributed to the filtering effect of **5** which has a very broad absorption band centring at $\lambda 330$ nm. Thus, both US and thermolysis gave better yields. In the photolysis of benzylchlorodiazirine **1d**, benzylchlorocarbene **2d** reacts with 2-vinylpyridine to form the expected pyridinium ylide **3d** (λ 380 nm as determined by laser flash photolysis). Apparently, the cyclization of **3** to **4** has a much higher activation energy than the 1,2-hydrogen shift (in the carbene or in the ylide) to form β -chlorostyrenes, hence no indolizine

	Product 5	X	Method	Yield (%)	¹ H NMR δ (CDCl ₃)
	a	Ph	hv	10 ^a	6.4-6.7 (m, 1-H, 6-H, 8-H), 6.83 (d, 2-H, J 4 Hz),
			Heat	52	7.2-7.7 (m, Ph, 7-H), $8.1-8.4$ (m, 5-H)
			US	40	(,,,,,,
	b	p-MeC ₆ H ₄	hv	12 <i>a</i>	2.40 (s, Me), 6.4–6.7 (m, 1-H, 6-H, 8-H), 6.87
		• • •	Heat	52	$(d, 2-H, J 4 Hz), 7.2-7.7 (m, C_6 H_4, 7-H), 8.2-8.4$
			US	54	(m, 5-H)
	с	$p-ClC_6H_4$	hv	114	6.4-6.7 (m, 1-H, 6-H, 8-H), 6.86 (d, 2-H, J 4 Hz),
		• • •	Heat	52	7.2-7.7 (m, C ₆ H ₄ , 7-H), $8.1-8.4$ (m, 5-H) ^b
			US	47	
	d	PhCH ₂	Heat	27	4.21 (s, CH ₂), 6.3-6.8 (m, 1-H, 2-H, 6-H, 8-H),
		-			$7.0-7.8 (m, Ph, 7-H), 8.5-8.7 (m, 5-H)^{c}$
	e	p-MeC ₆ H ₄ CH ₂	Heat	21	2.30 (s, Me), 4.19 (s, CH ₂), 6.2–6.8 (m, 1-H, 2-H,
					6-H, 8-H, 7.10 (s, C ₆ H ₄), 7.2-7.9 (m, 5-H, 7-H)
	f	p-ClC ₆ H ₄ CH ₂	Heat	21	$4.20(s, CH_2), 6.3-6.8(m, 1-H, 2-H, 6-H, 8-H),$
					7.0–7.7 (m, C_6H_4 , 5-H, 7-H) ^d
	g	Cl	US	13	6.3-6.9 (m, 1-H, 2-H, 6-H, 8-H), 7.2-7.6 (m, 7-H),
					7.8-8.1 (m, 5-H)

^{*a*} Isolated yield based on the amount of arylchlorodiazirine used. ^{*b*} MS, *m/z* 229 (34), 227 (100), 192 (24), 191 (49), 96 (32). ^{*c*} Mp 60.5–61 °C. MS, *m/z* 207 (45), 206 (23), 204 (12), 130 (100), 77 (13), 51 (12). ^{*d*} Mp 73.5–74 °C.

5d was observed in photolysis. In thermolysis, the cyclization can compete effectively with the 1,2-H shift thus giving 5d-f and β -chlorostyrenes in 21 and 38% yields respectively (for 3-chloro-3-*p*-methylbenzyldiazirine 1e). In the case of dichlorocarbene, the isolated yield of 3-chloroindolizine 5g is low because it is unstable and turns dark at room temperature.

Photolysis was carried out by irradiation (350 nm) of solutions of chlorodiazirines 1a-c (0.2 mol dm⁻³) and 2vinylpyridine (1 mol dm⁻³) in hexane at 25 °C for 24 h to give indolizines 5a-c. For thermolysis reactions solutions of chlorodiazirines 1a-f (0.1 mol dm⁻³) and 2-vinylpyridine (0.5 mol dm⁻³) in absolute benzene were refluxed for 16 h to form indolizines 5a-f. Ultrasonic irradiation of solutions of chlorodiazirines 1a-c (0.2 mol dm⁻³) and 2-vinylpyridine (1 mol dm⁻³) in hexane was conducted in a round-bottomed flask, equipped with a mechanical stirrer, immersed in a sonic cleaner (Fisher Scientific Solid State Ultrasound FS-9) and simultaneously stirred and irradiated with US for 48 h to give indolizines 5a-c. 3-Chloroindolizine 5g was synthesised by ultrasonic irradiation of a mixture of powdered NaOH (0.8 g, 20 mmol) and 2-vinylpyridine (0.21 g, 2.0 mmol) in chloroform (20 ml), placed in a 100 ml, round-bottomed flask equipped with a mechanical stirrer. The flask was immersed in a sonic cleaner and the mixture was simultaneously stirred and irradiated with US for 4 h, the temperature of the bath during US irradiation was 40 °C. In all cases indolizines 5a-g were

J. CHEM. SOC., CHEM. COMMUN., 1994

isolated by column chromatography (basic alumina) using hexane as an eluent. Indolizines **5d**, **f** were then recrystallized from hexane.

M. T. H. Liu thanks the NSERC (Canada) for an International Collaborative Research Grant.

Received, 27th October 1993; Com. 3/064401

References

- 1 F. J. Swinbourne, J. H. Hunt and G. Klinkert, in Advances in Heterocyclic Chemistry, ed. A. R. Katritzky and A. J. Boulton, Academic Press, New York, London, 1978, vol. 23, pp. 103-170.
- 2 A. P. Laws and R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, 591.
- 3 T. Uchida and K. Matsuomoto, Synthesis, 1976, 209.
- 4 M. T. H. Liu and R. Bonneau, J. Am. Chem. Soc., 1992, 114, 3604.
- 5 J. E. Jackson, N. Soundararajan, M. S. Platz and M. T. H. Liu, J. Am. Chem. Soc., 1988, 110, 5595; D. A. Modarelli and M. S. Platz, J. Am. Chem. Soc., 1991, 113, 8985; R. Bonneau, M. T. H. Liu and R. Lapouyade, J. Chem. Soc., Perkin Trans 1, 1989, 1547.
- 6 W. H. Graham, J. Am. Chem. Soc., 1965, 87, 4396.
- 7 M. T. H. Liu, N. H. Chishti, M. Tencer, H. Tomioka and Y. Izawa, Tetrahedron, 1984, 40, 887.
- 8 S. L. Regen and A. Singh, J. Org. Chem., 1982, 47, 1587.
- 9 K. Berg-Nielsen, Acta Chem. Scand., Ser. B, 1977, **31**, 224; A. Ohsawa, Y. Abe and H. Igeta, Chem. Lett., 1979, 241.