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Abstract: Treatment of N-substituted phthalimide-derived hemi-
aminal with alkyllithium led to tetrahydroisoquinolones with high
diastereoselectivity. Mechanistic studies furnish persuasive evi-
dence that the present ring-enlarging reaction proceeds via tau-
tomerization of the hemiketal moiety and the resulting ketone
undergoes an intramolecular nucleophilic addition reaction.

Key words: hemiaminal, a-aminocarbanion, stereoselective syn-
thesis, tetrahydroisoquinolone, axial chirality

Substituted tetrahydroisoquinolones are valuable com-
pounds as synthetic precursors for a large and diverse
family of biologically important alkaloids.1 Although
several methods for the stereoselective synthesis of sub-
stituted tetrahydroisoquinolones have been reported, a
more efficient approach needs to be developed.2 Herein,
we wish to report a stereoselective approach to syn-3,4-
disubstituted tetrahydroisoquinolones B by an anionic
ring-enlarging reaction of phthalimide-derived hemi-
aminal A (Scheme 1). We found this simple and efficient
approach while studying a-amino alkylstannanes.3 

Scheme 1

Recently, we synthesized a phthalimide-derived a-amino
alkylstannane 1 to study the aza-Wittig rearrangement.3a

To further explore the synthetic utility of this class of
compounds, we planned ring-enlarging acyl migration of
alkyllithium i prepared from 1 via Sn→Li transmetalla-
tion (vide infra: path A in Scheme 3).4 However, the reac-
tion of stannane 1 with an equimolar of n-BuLi in THF at
–78 °C gave hemiaminal 2 exclusively (88%), instead of
the expected ring-enlarged product.5 Nevertheless, a
similar reaction using two equivalents of n-BuLi gave
tetrahydroisoquinolone syn-3 in 46% yield as a single dia-
stereomer,6 along with hemiaminal 2 (18%; Scheme 2).
These results clearly indicated that nucleophilic addition

of n-BuLi to the imido-carbonyl is much faster than Sn→

Li transmetallation and that the ring-enlarging reaction
proceeds via dilithiated hemiaminal v as shown in path B
(Scheme 3).

Scheme 2

Scheme 3

Based on this observation, we envisaged that the non-
stannylated phthalimides, bearing an acidic a-amino pro-
ton, can also provide tetrahydroisoquinolones via v by the
action of an excess amount of organolithium as a base. As
expected, the reaction of N-benzyl-phthalimide (4) with
five equivalents of n-BuLi in THF gave tetrahydroisoqui-
nolone 5a, although the chemical yield was moderate
(Scheme 4). Significantly enough, a similar reaction using
MeLi provides the corresponding ring-enlarging product
5b in excellent yield with a high level of syn-selectivity
(98% yield, dr = 95:5).7 This result reveals that MeLi is a
superior base for the present ring-enlarging reaction.8

In order to access a wider variety of tetrahydroisoquinolo-
nes, next we performed a ring-enlarging reaction of
hemiaminal 6 containing various R¢ groups. 
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Scheme 5

Hemiaminals 6a–d were easily prepared from 4 with the
corresponding R¢M reagents, and they provide tetra-
hydroisoquinolones 5a–d upon treatment with MeLi in
excellent chemical yields as shown in Scheme 5.9,10

The present ring-enlarging reaction most probably pro-
ceeds via tautomerization of the hemiketal moiety and the
resulting ketone undergoes an intramolecular nucleophilic
addition reaction (path A in Scheme 6). 

An equally likely aza-[1,2]-Wittig rearrangement path-
way (path B in Scheme 6)11 was ruled out by the result of
a comparable experiment with 6b-derived methyl aminal
7 and deoxygenated-derivative 8 (Figure 1). They are
reasonable substrates for aza-Wittig rearrangement; how-
ever, they gave no ring-enlarging product under similar
conditions.12 It clearly shows the hemiketal moiety is
essential in the present ring-enlarging reaction. 

It is interesting to note that the hemiaminal alkoxide acts
as a masked ketone, and reacts only with an intramolecu-
lar nucleophile (benzylic carbanion) but does not react
with the excess alkyllithium.

To validate the proposed mechanism and to gain an in-
sight into the high syn-selectivity, we performed a compu-
tational study of simplified model compound 9 using
density functional theory (DFT) calculations (Figure 2).13

First, the expected transition states TS1 (6.0 kcal mol–1)
for isomerization of dilithiated hemiaminal 9 and TS3
(14.2 kcal mol–1) for intramolecular nucleophilic addition
leading to 10 (–16.0 kcal mol–1) were optimized from the
predicted geometries near the saddle points. Second, in-
trinsic reaction coordinate (IRC) analyses of the thus-ob-
tained TS1 and TS3 were performed to demonstrate the
adequacy of their structures, as well as to find the struc-
ture of the intermediates. Interestingly enough, IRC calcu-
lation of TS1 gave 9 and IM1 (–9.9 kcal mol–1) as the two
stable conformations; in the meantime, TS3 gave 10 and
IM2 (–5.7 kcal mol–1). These results indicate that the
present ring-enlarging reaction proceeds via at least three
steps. Finally, the transition state TS2 (17.4 kcal mol–1)
for the transformation of IM1 to IM2 was found to have
the highest energy barrier in this reaction pathway.

The reaction profile shows that this reaction is constructed
from the three steps, and the intermediate IM1 is trans-
formed into IM2 so the reaction points are in close prox-
imity (C1 and C1¢) along with Li1 and Li2 which change
their counter anion from N to C1¢ and C1¢ to N, respective-
ly. Next, the transition states of C1¢-methyl-substituted
model compound 11 were calculated, in a similar manner,
to clarify the origin of the syn-selectivity in this reaction
(Scheme 7). 

As a result, the anti-selective transition state at the third
step (anti-TS3) shows a significantly higher energy barri-
er (16.7 kcal mol–1) than that of the syn-selective transi-
tion state (syn-TS3, 8.0 kcal mol–1). The steric repulsion
of substituents on C1 and C1¢ carbons increases the activa-
tion energy of the transition state anti-TS3 so that the syn-
product is predicted to be formed as the major diastereo-
mer through the transition state syn-TS3. Encouraged by
the establishment of a highly syn-selective ring-enlarging
reaction, we next performed a similar reaction using enan-
tio-enriched stannane 1. To our surprise, the optical purity
of syn-3 obtained from (R)-1 (>95% ee) was only 33% ee,

Scheme 4
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which means that the reaction proceeds in a non-ste-
reospecific manner in terms of a-amino carbanion chiral-
ity.14,15 On the contrary, the reaction of both diastereomers
of hemiaminal 2, namely (1S,1¢R)-2 and (1R,1¢R)-2, pro-
vides syn-3 maintaining surprisingly high optical purity
(62–68% ee). Of particular note, is that their major enan-
tiomer has the opposite sign of rotation (Scheme 8).16 The
above-mentioned stereochemical outcome is attributable
to the axial chirality on the carbonyl moiety in vi or ent-vi
derived from the central chirality of C1 and it exerts a
stronger influence than that of the a-amino carbanion
chiral center (C1¢) on the steric course of the reaction.
Then the reaction of (1S,1¢R)-2 preferentially proceeds via
vi to provide (3S,4S)-317 with retention of stereochemistry
at C1 and C1¢ (C4 and C3 in 3) (Scheme 9). On the other
hand, (1R,1¢R)-2 provides intermediate epi-vi having
severe 1,2-repulsion between the n-Bu and R group.
Therefore, its a-amino carbanion center was epimerized
to form stereochemically favorable ent-vi which under-
goes cyclization to provide (3R,4R)-3.

Scheme 8

In summary, we have described a diastereoselective
approach to tetrahydroisoquinolone by the ring-enlarging
reaction of phthalimide-derived hemiaminals. Further
studies on the scope and limitation of this reaction as well
as its synthetic applications are now under way. 
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Figure 2 B3LYP/6-31+G(d) potential energy surface of the ring-enlarging reaction of dilithiated hemiaminal 9 (energies in kcal mol–1).

Scheme 7 Transition states of intramolecular addition reaction
(TS3) for dilithiated hemiaminal 11 [B3LYP/6-31+G(d)].
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