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Abstract: : Convergent syntheses of differentially protected phenyl D-thioglucopyranosides and I-phenyl D- 

thioglucopyranosiduronic acids were achieved by employing the Hanessian reaction method. 
0 1998 Else&r Science Ltd. All rights reserved. 

Thioglycosides are used extensively in synthetic carbohydrate chemistry. They are most often used as 

glycosyl donors’ and as key intermediates in the preparation of anomeric &oxides. Glycosyl sulfoxides are 

known to be excellent glycosyl donors in both solution and solid phase glycosylation reactions.’ In addition, 

the anomeric alkyl/aryl thio group can be used as a temporary protecting group for the sugar anomeric 

center. As a protecting group, it is stable under many reaction conditions and can be easily removed.3 

Thioglycosides have been prepared from the precursor lactol sugar and from l-halo, 1-0-acyl and I- 

0-alkyl derivatives of carbohydrates.4 Direct conversion of alkyl glycosides to their corresponding 

thioglycosides was fist reported by Hanessian and Guindon.’ The conditions used for the conversion of 

alkyl glycosides to thioglycosides have also been used for the cleavage of benzyl ether protecting groups 

(see Fig. 1).6 However, the dual capability of these reaction conditions has not been utilized in any 

concerted fashion in carbohydrate synthesis. 
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Figure 1 

In an effort to construct carbohydrate-based combinatorial libraries to identify new therapeutic agents, 

we wanted to synthesize a series of thioglucoside and thioglucosiduronic acid building blocks 1 and 2. It 
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was necessary that these building blocks be differentially protected with orthogonal or modulated protecting 

groups’ to allow selective derivatization in a combinatorial format. 

laR,=Bn,Rz=OHC 
bR,=All,R2=OHC 
cRI=All,R,=Bz 
dR,=All,Ra=L.m 

2aRi=Bn,R2=OHC 
bR,=All,R*=OHC 
cR,=AIl,R2=Bz 
dR,=All,RZ=Lev 
eR,=H,R2=Lev 

Although the synthesis of compounds 1 and 2 could be achieved using published procedures requiring 

multiple protectionldeprotection steps and a non-regioselective phase transfer catalyzed reaction,* we 

envisioned utilizing the dual capability of the Hanessian reaction to efficiently synthesize these building 

blocks. We were particularly encouraged by a preliminary experimental result indicating that under the 

conditions of the Hanessian reaction, the benzyl ether of a primary hydroxyl group was preferentially 

cleaved over the benzyl ether of a secondary hydroxyl group.’ Scheme 1 outlines the synthesis of 

intermediates 7a-d required for the preparation of compounds 1 and 2 via this strategy. 
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a RI: Bn (75%) a R, = Bz, Rz = OHC (100%) 
b R, = All (82%) bR,=AU,Rz=OHC(lOO%) 

c R, = All, R2 = Bz (86%) 
d R, = All, R2 = Lev (85%) 
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Reagents and conditions: a) 1. Bu$nO, tolueue; 2. BnBr for 4a or AllBr for 4b;” b) HCO,H, Ac,O, TEA, DMAF’ 
DCM for 5a and 5b; BzCl, DMAP, Py. for 5c; LevOH, DCC, DMAP, DCM for 5d; c) TES, TFA, DCM;” d) 

B&I, DMAP, Py. 

Scheme 1 

As hoped, when 7a-c were subjected to the Hanessian conditions, the desired debenzylated 

thioglucosides la-c were obtained. However, when 7d was treated under the same condition, the ketone 

car-bony1 functionality of the levulinoyl protecting group was transformed to a thioketal. To circumvent this 

problem, we carefully reduced the carbonyl group with NaBH. With a masked Lev group, 8 was now 

successfully converted to the thioglucoside 9 (Scheme 2).‘*,r3 Compounds la-c and 9 were subsequently 

oxidized to the corresponding glucosiduronic acids 2a-d with PDC in DMF (Scheme 3). Contrary to an 
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early report,14 no sulfoxide or s&one by-products were detected even when excess PDC was used. We also 

showed that a sonicated Jones oxidation afforded the same selectivity.” 

a 

7a-c 

a 

7d 
OMe 
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8 (95%) 9 (54%) 

R=wnb and condithns: a) PhSSM% (5 eq.), Zn12 (3 eq), Bu,NI (1.5 eq), CICH,CH,C~, 6o”c, 3h; b) NF+BH~, 
EtOH; d PhSSMe, (8 q.), ZnI, (6 q), Bu4NI (3 a$, CKYH2CH2Cl, 60°C, 6h. 
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Scheme 3 

To obtain a carbohydrate building block with a free C-2 hydroxyl group, we investigated deallylation 

of 2d. After several unsuccessful or unsatisfactory attempts using reagents PdClJMeOH, 

PdClJNaOAc/AcOWHzO, (Ph3P),RhCl/DABCO/F30H/Hg(II), Pd-C/PTSA/MeOWH2016 and Pd- 

C/PTSA/dioxane/H~0,‘7 we found that 2e was obtained in 70% yield by treatment of 2d with lO%Pd-C 

in refluxing dioxaneiwater containing TFA (Scheme 4). 

Scheme 4 

In summary, we have demonstrated that differentially protected phenyl thioglucopyranosides and I- 

phenyl thioglucopyranosiduronic acids can be efficiently synthesized from readily available methyl 

glucopyranoside using the Hanessian reaction conditions to effect simultaneous thiolation and 
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debenzylation. We are currently using these building blocks in the generation of carbohydrate-based 

combinatorial libraries. 
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