A Mild Method for Conversion of Epoxides into α-Chloro Ketones

Sushil Raina, Debnath Bhuniya, and Vinod K. Singh*

Department of Chemistry, Indian Institute of Technology Kanpur, India - 208 016

Abstract: Epoxides on treatment with DMSO, oxalyl chloride, and 10 mole % of methanol in the presence of triethylamine at -60° C are converted to α -chloro ketones in high yield.

Conversion of α -chloro ketones to optically active epoxides via enantioselective reduction¹ is a very important transformation in organic synthesis. As a part of our programme on enantioselective synthesis of (3*S*)-2,3-oxidosqualene 1², we required to prepare the corresponding α -chloro ketone 2. Despite the availability of many methods for the synthesis of α -chloro ketones involving the use of olefin^{3a}, α -halohydrin^{2,3b}, ketones^{3c}, and epoxides^{3d}, there still exists a need for new method, especially for complex and sensitive molecules. In this paper we report a simple and mild method for direct conversion of epoxides to α -chloro ketones through the use of dimethyl sulfoxide, oxalyl chloride, and catalytic amount of methanol in the presence of triethylamine

The reaction of dimethyl sulfoxide and oxalyl chloride at -60° C gives chlorodimethyl sulfonium salt,⁴ which readily opens cyclic epoxides to α -chloro alkoxysulfonium salt. But, in the case of acyclic epoxides the reaction is either arbitrary or does not proceed at all. However, we have observed that upon addition of 5-10 mole % of methanol, both the types of epoxides are opened to α -chloro alkoxysulfonium salt, which on treatment with base gives α -chloro carbonyl compounds. In the case of terminal epoxides, 3 to 5 % of α -chloroaldehyde was also obtained. The following is the typical procedure for the conversion of epoxide to α -halo carbonyl compounds:

Oxalyl chloride (2.5 mmol) was added to a solution of DMSO (2.5 mmol) in CH₂Cl₂ (10 ml) at -60° C. The reaction mixture was stirred for 5 min and then epoxide (1.0 mmol) and methanol (0.1 mmol) were added. After stirring for 30 min at -60° C, triethylamine (5 mmol) was added and the mixture was stirred for 10 min and then allowed to warm to room temperature (30 min). Usual work-up⁴ gave α -chloro ketone⁵ in high yield (Table 1).

Further work in the form of mechanism, scope, and application in synthesis in this area is still in progress and will be reported soon.

Epoxides	α -Chloro ketones	Isolated Yield (%)
$\bigcirc \circ$		94
Me-(CH ₂)9	Me-(CH ₂)9	88
Vo OAc	OAc	90
$\sim\sim\sim_{\circ}$		70
		55

Table 1: Reaction of epoxides with DMSO-CICOCOCI-MeOH-Et₃N in CH₂Cl₂.

ACKNOWLEDGEMENT: We thank D.S.T. and C.S.I.R. for financial support.

REFERENCES AND NOTES

- (a). Singh, Vinod, K. Synthesis 1992, appearing in the July issue. (b). Corey, E.J.; Bakshi, R.K.; Shibata, S.; Chen, C.P.; Singh, Vinod, K. J. Am. Chem. Soc. 1987, 109, 7925.
- 2. Corey, E.J.; Yi. K.Y.; Matsuda, S.P.T. Tetrahedron Lett. 1992, 33, 2319.
- (a). Ascoli, R.D.; D'Auria, M.; Nucciarelli, L.; Piancatelli, G.; Scettri, A. Tetrahedron Lett.
 1981, 21, 4521. (b). Kagan, J.; Firth, B.E.; Shih, N.Y.; Boyajan. C.G. J. Org. Chem.
 1977, 42, 343. (c). Mehta, G.; Padma, S. J. Am. Chem. Soc. 1987, 109, 7230. (d). Olah,
 G.A.; Vankar, Y.D.; Arvanaghi, M. Tetrahedron Lett. 1979, 3653.
- 4. Mancuso, A.J.; Swern, D. Synthesis 1981, 165.
- 5. All the compounds were fully characterized by spectral and analytical data.

(Received in UK 21 July 1992)