## A Simple Synthesis of Methyl 2,3,6- and 2,4,6-Tri-O-benzyl-α-p-mannosides

Shinkiti Koto,\* Kazuhiro Takenaka, Naohiko Morishima, Akiko Sugimoto, and Shonosuke Zen School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108
(Received June 12, 1984)

Synopsis. Cotrolled benzylation of methyl  $\alpha$ -D-mannopyranoside with benzyl chloride and LiOH selectively gave the 2,3,6-tribenzyl ether in a 53% yield. Such a reaction using benzyl chloride and KOH afforded mainly the 2,4,6-tribenzyl ether in a 41% yield. The products were allylated and then hydrolyzed to give the corresponding 1-OH derivatives.

Various methods for the synthesis of partially benzylated carbohydrates have been proposed.<sup>1)</sup> This kind of compound, however, has often been prepared through direct benzylation<sup>2)</sup> of readily available methyl glycosides.<sup>3–5)</sup>

Benzylation of methyl  $\alpha$ -p-mannopyranoside (1) in benzyl chloride (BnCl) and LiOH (8 equiv) at 140 °C for 9h selectively gave the 2,3,6-tribenzyl ether 2 in a 53% yield. Benzylation of 1 in BnCl and KOH (4.5 equiv) at 140 °C for 3h mainly furnished the 2,4,6-tribenzyl ether 36 in a 41% yield.

A trace (<1%) of the 3,4,6-tribenzyl ether  $4^{7}$ ) and an appreciable quantity (3—8%) of the 2,3,4-tribenzyl ether  $5^{8}$ ) were always isolated from the reaction mixture. Controlled benzylation of the 3,4-dibenzyl ether  $7^{9}$ ) also gave 5 as the main product. These show that

the 2-OH group, rather than the 6-OH group, of 1 has an unusual susceptibility to benzylation.

Other mannosides, benzyl, <sup>10)</sup> allyl, <sup>11)</sup> and phenyl  $\alpha$ -D-mannopyranosides <sup>12)</sup> (**8**, **12**, and **16**) afforded preferentially the corresponding 2,3,6-tribenzyl ethers via the benzylation with LiOH.

The tribenzyl ethers, 2 and 3, were allylated and hydrolyzed to the respective 1-OH derivatives, 20 and 21.6°)

## Experimental<sup>3-5)</sup>

4-O-Allyl-2,3,6-tri-O-benzyl-D-mannopyranose (20). Compound 2 (157.7 mg, 0.34 mmol) was allylated in allyl bromide (Wako, 3 ml) in the presence of NaH (Wako, 60%, 95 mg) at 70°C for 2 h. The allyl ether was hydrolyzed in a mixture of AcOH (5.4 ml) containing aq H<sub>2</sub>SO<sub>4</sub> (3M, 0.75 ml (1 M=1 mol dm<sup>-3</sup>)) at 100°C for 1.3 h to gave 20 (70.0 mg, 42%).

3-O-Allyl-2,4,6-tri-O-benzyl-p-mannopyranose (21). Compound 3 (145.9 mg) was converted into 21 (50.8 mg, 33%).

Methyl 2-O-Acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranoside. 1,2,3,4,6-Penta-O-acetyl-α-D-mannopyranose (Kyowa, 250 mg, 0.64 mmol) was stirred in CH<sub>2</sub>Cl<sub>2</sub> (0.65 ml) containing

TABLE 1. THE RESULTS OF BENZYLATION OF MANNOPYRANOSIDES

|     |                      |               |        | _   |           |                         |    |                       |    | Yield                 |    |                       |   |
|-----|----------------------|---------------|--------|-----|-----------|-------------------------|----|-----------------------|----|-----------------------|----|-----------------------|---|
| Run | Starting<br>Material | Alkali(equiv) |        | *C  | Time<br>h |                         |    |                       |    |                       |    |                       |   |
|     |                      |               |        |     |           | 2,3,4,6-Bn <sub>4</sub> |    | 2,3,6-Bn <sub>3</sub> |    | 2,4,6-Bn <sub>3</sub> |    | 2,3,4-Bn <sub>3</sub> |   |
| 1   | 1                    | LiOH          | (8.0)  | 140 | 9         | 6                       | 14 | 2                     | 53 | 3                     | 10 | 5                     | 6 |
| 2   | 1                    | LiOH          | (8.0)  | 140 | 24        | 6                       | 24 | 2                     | 38 | 3                     | 3  | 5                     | 4 |
| 3   | 1                    | LiOH          | (13.5) | 140 | 6         | 6                       | 14 | 2                     | 50 | 3                     | 6  | 5                     | 3 |
| 4   | 1                    | KOH           | (4.5)  | 100 | 9         | 6                       | 12 | 2                     | 17 | 3                     | 30 | 5                     | 3 |
| 5   | 1                    | KOH           | (4.5)  | 140 | 3         | 6                       | 20 | 2                     | 18 | 3                     | 41 | 5                     | 8 |
| 6   | 1                    | RbOH          | (4.5)  | 70  | 5.5       | 6                       | 9  | 2                     | 19 | 3                     | 33 | 5                     | 5 |
| 7   | 8                    | LiOH          | (8.0)  | 140 | 9         | 11                      | 8  | 9                     | 31 | 10                    | 5  |                       | _ |
| 8   | 8                    | KOH           | (4.5)  | 140 | 3         | 11                      | 14 | 9                     | 13 | 10                    | 17 |                       | _ |
| 9   | 12                   | LiOH          | (8.0)  | 140 | 9         | 15                      | 20 | 13                    | 35 | 14                    | 3  |                       | _ |
| 10  | 12                   | кон           | (4.5)  | 100 | 3         | 15                      | 21 | 13                    | 21 | 14                    | 19 |                       | _ |
| 11  | 16                   | LiOH          | (8.0)  | 140 | 9         | 19                      | 4  | 17                    | 35 | 18                    | 4  |                       | _ |
| 12  | 16                   | KOH           | (4.5)  | 100 | 3         | 19                      | 10 | 17                    | 23 | 18                    | 19 |                       | _ |

a: Not isolated.

TABLE 2. PHYSICAL AND ANALYTICAL DATA OF COMPOUNDS

|       | $[\alpha]_D^{20}(c, CHCl_3)$ | - R <sub>f</sub> | Toluene  |                                                |       |       |       |        |
|-------|------------------------------|------------------|----------|------------------------------------------------|-------|-------|-------|--------|
| Compd |                              |                  |          | Mol. Form.                                     | Calcd | Found |       |        |
|       | deg                          |                  | Butanone |                                                | С     | H     | С     | Н      |
| 2     | +2(2.0)                      | 0.54             |          |                                                |       |       | 71.73 | 6.91   |
| 3     | +17(0.2)                     | 0.60             | /E /1\   | C <sub>28</sub> H <sub>32</sub> O <sub>6</sub> | 72.39 | 6.94  | 72.04 | 6.94 a |
| 4     | +56(3.0)                     | 0.23             | (5/1)    |                                                |       |       | 72.53 | 6.95 b |
| 5     | +29(0.2)                     | 0.27             |          |                                                |       |       | 72.39 | 6.92 c |
| 9     | +30(0.3)                     | 0.47             | (10/1)   | CHO                                            | 75.53 | 6.71  | 75.23 | 6.71   |
| 10    | +33(0.2)                     | 0.56             | (10/1)   | C <sub>34</sub> H <sub>36</sub> O <sub>6</sub> | 15.55 | 0.71  | 75.50 | 6.93   |
| 13    | +3(1.6)                      | 0.51             |          |                                                |       |       | 73.43 | 6.97   |
| 14    | +46(0.2)                     | 0.62             | (0.43)   | C <sub>30</sub> H <sub>34</sub> O <sub>6</sub> | 73.45 | 6.99  | 72.92 | 6.83   |
| 20    | +21(1.0)                     | 0.42             | (6/1)    |                                                |       |       | 73.18 | 7.00   |
| 21    | +21(1.7)                     | 0.38             |          |                                                |       |       | 73.73 | 6.81   |
| 17    | +35(0.4)                     | 0.60             |          | C <sub>33</sub> H <sub>34</sub> O <sub>6</sub> | 75.26 | 6.51  | 75.36 | 6.43   |
| 18    | +66(0.2)                     | 0.70             | (7/1)    |                                                |       |       | 75.35 | 6.49   |
| 11    | +51(0.3)                     | 0.65             | (10/1)   | C41H42O6                                       | 78.07 | 6.71  | 77.81 | 6.63   |
| 15    | +51(0.3)                     | 0.70             | (6/1)    | C <sub>37</sub> H <sub>40</sub> O <sub>6</sub> | 76.53 | 6.94  | 76.18 | 6.94   |
| 19    | +71(0.3)                     | 0.84             | (7/1)    | C <sub>40</sub> H <sub>40</sub> O <sub>6</sub> | 77.90 | 6.55  | 77.71 | 6.53   |

a Ref. 7a:  $[\alpha]_D^{21}+59.7^{\circ}(c\ 1.85,\ CH_2Cl_2)$ , Ref. 7b:  $[\alpha]_D^{25}+57.7^{\circ}(c\ 0.485,\ CHCl_3)$ . b Ref. 6a:  $[\alpha]_D^{25}+14.4^{\circ}(c\ 1,\ CHCl_3)$ , Ref. 6b:  $[\alpha]_D^{25}+16.9^{\circ}(c\ 1.5,\ CHCl_3)$ , Ref. 6c:  $[\alpha]_D^{25}+17.2^{\circ}(c\ 1.0,\ CHCl_3)$ . c Ref. 8:  $[\alpha]_D+30^{\circ}(c\ 0.49,\ CHCl_3)$ .

TABLE 3. 1H NMR DATA FOR THE ACETATES OF THE TRIBENZYL ETHERS OF MANNOPYRANOSIDES<sup>a</sup>

| C                         | (ppm) H-l |          | H-2  |          | H-3      |     | H-4      |     | Ac-3 | Ac-4 |
|---------------------------|-----------|----------|------|----------|----------|-----|----------|-----|------|------|
| Compd                     | (Hz)      | $J_{12}$ |      | $J_{23}$ | $J_{34}$ |     | $J_{45}$ |     | AC-3 | AC-4 |
| Acetates <sup>b</sup> of. |           |          |      |          |          |     |          |     |      |      |
| 2                         | 4.61      |          | _    |          | _        |     | 5.20     |     | _    | 1.82 |
| -                         |           | 2.1      |      | _        |          | 9.0 | 0.00     | 9.0 | 1.04 |      |
| 3                         | 4.61      |          | 3.77 | 0.0      | 5.03     | 0.5 | 3.80     | 0.0 | 1.84 | _    |
| J                         | . = 0     | 1.8      |      | 3.2      |          | 8.7 | r 00     | 9.6 |      | 1.00 |
| 9                         | 4.76      |          |      |          |          | 0.0 | 5.22     | 0.0 |      | 1.80 |
| -                         | 4.55      | 2.0      | 0.00 | _        | F 10     | 9.0 | 3.92     | 9.0 | 1.87 |      |
| 10                        | 4.75      | 0.0      | 3.80 | 3.0      | 5.12     | 8.1 | 3.92     | 8.1 | 1.07 | _    |
|                           | 4.60      | 2.0      |      | 3.0      |          | 0.1 | 5.17     | 0.1 | _    | 1.80 |
| 13                        | 4.00      | 1.6      |      |          | _        | 9.0 | 3.17     | 9.0 | _    | 1.00 |
|                           | 4.73      | 1.0      | _    | _        | 5.08     | 3.0 | _        | 5.0 | 1.89 | _    |
| 14                        | 1.75      | 2.0      |      | 3.5      | 5.00     | 8.5 |          | _   | 2.00 |      |
|                           | 5.37      |          | 3.81 | 2.0      | 3.87     | 2.0 | 5.31     |     | _    | 1.80 |
| 17                        | 3.01      | 1.6      |      | 3.0      |          | 8.7 |          | 9.8 |      |      |
| 10                        | 5.37      |          | 3.97 |          | 5.22     |     | 4.00     |     | 1.85 | _    |
| 18                        |           | 2.3      |      | 3.0      |          | 8.4 |          | 9.6 |      |      |

a: At 90 Mz in CCl<sub>4</sub> with Me<sub>4</sub>Si. b: Acetylation of a sample with excess Ac<sub>2</sub>O in pyridine at room temperature overnight, followed by chromatography on silica gel using benzene -2- butanone system gave a homogeneous acetate.



|       |              |   |               | All=allyl<br>Bn=benzyl |       |                        |  |  |
|-------|--------------|---|---------------|------------------------|-------|------------------------|--|--|
|       |              |   |               | Dn=1                   | enzyi |                        |  |  |
| Compd | $\mathbf{x}$ | Y | Z             | L                      | Q     | R                      |  |  |
| 1     | OMe          | Н | н             | Н                      | Н     | Н                      |  |  |
| 2     | OMe          | Н | Bn            | Bn                     | Н     | Bn                     |  |  |
| 3     | OMe          | н | $\mathbf{Bn}$ | H                      | Bn    | Bn                     |  |  |
| 4     | OMe          | н | H             | Bn                     | Bn    | Bn                     |  |  |
| 5     | OMe          | н | Bn            | Bn                     | Bn    | H                      |  |  |
| 6     | OMe          | Н | Bn            | Bn                     | Bn    | Bn                     |  |  |
| 7     | OMe          | Н | н             | $\mathbf{Bn}$          | Bn    | H                      |  |  |
| 8     | OBn          | Н | Н             | H                      | H     | Н                      |  |  |
| 9     | OBn          | Н | Bn            | Bn                     | Н     | Bn                     |  |  |
| 10    | OBn          | Н | Bn            | Н                      | Bn    | Bn                     |  |  |
| 11    | OBn          | Н | Bn            | Bn                     | Bn    | Bn                     |  |  |
| 12    | OAll         | Н | Н             | Н                      | Н     | Н                      |  |  |
| 13    | OAll         | Н | Bn            | Bn                     | Н     | Bn                     |  |  |
| 14    | OAll         | H | Bn            | Н                      | Bn    | Bn                     |  |  |
| 15    | OAll         | Н | $\mathbf{Bn}$ | Bn                     | Bn    | Bn                     |  |  |
| 16    | OPh          | Н | H             | Н                      | Н     | Н                      |  |  |
| 17    | OPh          | н | $\mathbf{Bn}$ | Bn                     | Н     | $\mathbf{B}\mathbf{n}$ |  |  |
| 18    | OPh          | Н | Bn            | Н                      | Bn    | Bn                     |  |  |
| 19    | OPh          | H | Bn            | Bn                     | Bn    | Bn                     |  |  |
| 20    | OH,          | H | Bn            | Bn                     | All   | Bn                     |  |  |
| 21    | OH,          | H | Bn            | All                    | Bn    | Bn                     |  |  |

AcBr (Wako, 0.55 ml) and H<sub>2</sub>O (0.11 ml).<sup>14)</sup> After stirring for 3h at room temperature, evaporation and co-evaporation with toluene gave a syrup, which was treated in MeNO2 (0.64 ml) with 2,6-dimethylpyridine (0.24 ml) and MeOH (0.20 ml) at room temperature overnight. The mixture was diluted with CHCl<sub>3</sub>, washed with aq NaHCO<sub>3</sub> (5%) and the organic layer evaporated to give a syrup, which was stirred in BnCl (4 ml) containing crushed KOH (1.0 g) at 110-120 °C for 2 h. After filtration and evaporation, the mixture was chromatographed on alumina (Woelm, 02084) just with hexanetoluene and subsequently with diisopropyl ether-2-butanone systems to give a syrup (294.2 mg). This was treated in CH<sub>2</sub>Cl<sub>2</sub> (4 ml) with BF<sub>3</sub>·Et<sub>2</sub>O (5 µl) at room temperature for 5 min, followed by chromatography, to give the titled compound (232.3 mg, 72%,  $[\alpha]_D^{20} + 26^{\circ}(c 6, \text{CHCl}_3)$ ,  $\text{lit}_{,7a}^{7a}$ )  $[\alpha]_D^{27}$ +27.9° (c 2.24, CH<sub>2</sub>Cl<sub>2</sub>). Found: C, 71.42; H, 6.80%. Calcd for C<sub>30</sub>H<sub>34</sub>O<sub>7</sub>: C, 71.13; H, 6.77%).

This was quantitatively deacetylated with dil methanolic

NaOMe to give 4.

Benzylation of Methyl 3,4-Di-O-benzyl- $\alpha$ -D-mannopyranoside (7). The dibenzyl ether 79 (63.5 mg, 0.17 mmol) was stirred in BnCl (1.2 ml) containing LiOH (12.2 mg at 140 °C for 9 h. Chromatography gave a trace of 6,13 5 (21.7 mg, 28%), 4 (4.1 mg, 5%), and unchanged 7.

When **7** (63.2 mg), KOH (14.3 mg) and BnCl (1.2 ml) was stirred at 140 °C for 3 h, **5** (15.6 mg, 20%) and **4** (12%) were obtained after chromatography.

## References

- 1) T. Ogawa and M. Matsui, Carbohydr. Res., **62**, C 1 (1978); R. Taman, J. Rosik, and M. Zikmund, *ibid.*, **103**, 165 (1982); P. J. Garegg, T. Iversen, and S. Oscarson, *ibid.*, **50**, C12 (1976); R. Eby and C. Schuerch, *ibid.*, **100**, C41 (1982); A. Lipták, Tetrahedron Lett., **1976**, 3551.
- 2) G. Zemplén, Z. Csüros, and S. Angyal, *Chem. Ber.*, **70**, 1848 (1937).
- 3) S. Koto, Y. Takebe, and S. Zen, *Bull. Chem. Soc. Jpn.*, **45**, 291 (1972).
- 4) N. Morishima, S. Koto, M. Oshima, A. Sugimoto, and S. Zen, *Bull. Chem. Soc. Jpn.*, **56**, 2849 (1983).
- 5) N. Morishima, S. Koto, C. Kusuhara, and S. Zen, *Bull. Chem. Soc. Jpn.*, **55**, 631 (1982).
- 6) a) V. K. Handa, J. J. Barlow, and K. L. Matta, *Carbohydr. Res.*, **76**, Cl (1979); b) A. J. Verma and C. Schuerch, *J. Org. Chem.*, **46**, 799 (1981); c) F. Kong and C. Schuerch, *Carbohydr. Res.*, **112**, 141 (1983).
- 7) a) N. E. Franks and R. Montgomery, Carbohydr. Res., 6, 286 (1968); b) T. Ogawa, K. Katano, K. Sasajima, and M. Matsui, Tetrahedron, 37, 2779 (1981).
- 8) H. B. Borén, K. Eklind, P. J. Garegg, B. Lindberg, Å. Pilotti, *Acta Chem. Scand.*, **26**, 4143 (1972).
- 9) S. Koto, N. Morishima, T. Yoshida, M. Uchino, and S. Zen, *Bull. Chem. Soc. Jpn.*, **56**, 1171 (1983).
- 10) P. A. J. Gorin and A. S. Perlin, *Can. J. Chem.*, **39**, 2476 (1961).
- 11) F. M. Winnik, J. P. Carver, and J. J. Krepinsky, *J. Org. Chem.*, **47**, 2701 (1982).
- 12) B. Helferich and S. Winkler, *Chem. Ber.*, **66**, 1556 (1933).
- 13) S. Koto, N. Morishima, Y. Miyata, and S. Zen, *Bull. Chem. Soc. Jpn.*, **49**, 2639 (1976).
- 14) S. Koto, N. Morishima, T. Irisawa, Y. Hashimoto, M. Yamazaki, and S. Zen, *Nippon Kagaku Kaishi*, **1982**, 1651.