Formation of Coordinatively Unsaturated Cp*Ir-Amino Acid Complexes and Their Highly Diastereoselective Complexation Reactions

D. B. Grotjahn^{*} and T. L. Grov[†]

Department of Chemistry and Biochemistry Arizona State University, Tempe, Arizona 85287-1604

Received April 18, 1994

Amino acid-metal complexes have been the subject of innumerable studies,¹ prompted by the roles of metals in biochemistry² and amino acids in producing chiral catalysts.³ With very few exceptions,⁴ amino acid-metal complexes are coordinatively saturated. For example, interaction of *N*-unsubstituted amino acid salts with $[Cp^*IrCl(\mu-Cl)]_2 1$ leads to 18-electron complexes 2, the stereogenic element of the amino acid producing mixtures modestly enriched in diastereomer **2a** (from 50:50 up to 92:8).⁵ Here we report that under modified conditions, amino acid derivatives 3 bearing electron-withdrawing groups Z on N afford air-stable 16-electron species **4**, two members of which are characterized by X-ray diffraction. Furthermore, unlike ligand substitutions on **2** and related species, ligand *addition* reactions of chiral **4** proceed with high ($\geq 25:1$) stereoselectivity.

Typically, a mixture of 3,6 dimer 1,7 and anhydrous K₂CO₃ (molar ratio 1.00:0.50:2.0-3.0) was diluted with THF or CH_3 -CN until the concentration of 3 was 0.01-0.04 M. Nitrogen was bubbled through the mixture for 5-10 min, and the orange (THF) or yellow (CH₃CN) mixture was stirred for 4-36 h, until the color deepened to red. The residue remaining after rotary evaporation was diluted with CH2Cl2 and filtered through Celite, and the filtrate was concentrated to afford air-stable brick-red to burgundy-red 4 in $\geq 90\%$ yields.⁸ Surprisingly, elemental analysis, IR, and NMR data⁹ pointed to absence of coordination by THF, CH₃CN, or N₂ in the isolated products. The ¹H NMR data for glycine derivative 4a in CD_2Cl_2 were particularly revealing, a sharp two-proton singlet being seen at δ 3.20 ppm for the methylene group even at -90 °C, consistent with either an achiral structure or rapidly interconverting, enantiomeric, octahedral structures. X-ray crystallographic analysis on 4a¹⁰ confirmed the former suggestion: the centroid of Cp* lies 0.022 Å away from the mean plane defined by the five atoms of the chelate ring, and no atom of the chelate lies more than 0.029 Å away from that plane. Compared with 18-electron, 2,5 the Ir-N and Ir-O bonds are ca. 0.15 and 0.06 Å shorter, respectively,

* Author to whom correspondence should be addressed.

(1) Laurie, S. H. Amino Acids, Peptides and Proteins. In Comprehensive Coordination Chemistry; Wilkinson, G., Ed.; Pergamon: Oxford, 1987; Vol. 2, pp 739-776. Ioganson, A. A. Russ. Chem. Rev. 1985, 54, 277-292.

- (2) Metalloproteins: Structural Aspects. Adv. Protein Chem. 1991, 42. Ibers, J. A.; Holm, R. H. Science 1980, 209, 223-235.
 - (3) Brunner, H. Top. Stereochem. 1988, 18, 129-247.

(4) (a) To our knowledge, the only coordinatively unsaturated amino acid complexes reported are (CO)₂Rh¹(aminoacidato) complexes, which undergo CO substitution by PR₃ and AsR₃: Dowerah, D.; Singh, M. M. J. Ind. Chem. Soc. 1980, 57, 368-371. Dowerah, D.; Singh, M. M. J. Chem. Res. (S) 1979, 38. Dowerah, D.; Singh, M. M. Trans. Met. Chem. 1976, 1, 294-5. (b) A dimeric Cp^{*}Rh-glycine amide complex was recently suspected on the basis of ¹H NMR evidence of undergoing partial monomerization in solution to a species related to 4 (but formulated as rapidly epimerizing at Rh): Krämer, R.; Polborn, K.; Robl, C.; Beck, W. Inorg. Chim. Acta 1992, 198-200, 415-420.

(5) (a) Krämer, R.; Polborn, K.; Wanjek, H.; Zahn, I.; Beck, W. Chem. Ber. 1990, 123, 767-778. (b) Carmona, D.; Mendoza, A.; Lahoz, F. J.; Oro, L. A.; Lamata, M. P.; San Jose, E. J. Organomet. Chem. 1990, 396, C17-21.

(6) Compounds 3 were commercially available or made by standard procedures.

(7) White, C.; Yates, A.; Maitlis, P. M. Inorg. Synth. 1992, 29, 228.

(8) The synthesis of 4e (in THF) occasionally required addition of drying agent Na₂SO₄ to achieve red color.

(9) See supplementary material

Scheme 1^a

^a (a) K_2CO_3 , $[Cp*IrCl(\mu-Cl)]_2$, THF or CH₃CN, room temperature, 4–36 h; (b) ligand, CDCl₃ or C₆D₆, room temperature, ≤ 15 s.

suggesting stabilization of the formally 16-electron metal by lone pairs on N and O;¹¹ additional evidence for this insight follows.

Enantiomeric purity of complexes 4f and 4d was determined to be at least 95%;¹² derivatization^{9,13} gave mixtures of amides 5a/5b and 6a/6b,¹⁴ respectively, in ratios of at least 20:1.

The deep red color of solutions of 4 fades to yellow within seconds after addition of a phosphine ligand or CO,¹⁵ apparently a diagnostic color change for coordinative saturation in these systems. The resulting glycine-derived complexes **7a**, **8a**, and **9a** display ¹H NMR signals⁹ ascribable to two mutually coupled diastereotopic methylene protons, as expected for chiral species

(11) We thank Professor Bergman for pointing out this explanation: Glueck, D. S.; Wu, J.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc. 1991, 113, 2041–2054.

(12) The purity of 4f is considered to be an especially stringent test: Carpino,
L. J. Org. Chem. 1988, 53, 875-878.
(13) Treatment of 4 with HCl followed by DCC-mediated coupling of the

(13) Treatment of 4 with HCl followed by DCC-mediated coupling of the 3 so liberated with (S)- α -methylbenzylamine afforded the amides. Chiral shift reagents merely broadened peaks for 4. (S)- α -Methylbenzylamine binds to 4, but this complexation appears to be rapidly reversible on the NMR time scale, so far precluding determination of the enantiomeric purity of 4.

(14) (a) 5 is mentioned, but without detail: Clark, C. R.; Bouhadir, K.;
Mayfield, C. A.; DeRuiter, J. J. Chromatogr. Sci. 1990, 28, 407-412. (b)
6: Herlinger, H.; Kleinmann, H.; Ugi, I. Justus Liebigs Ann. Chem. 1967, 706, 37-46.

(15) Kölle, U.; Kossakowski, J.; Raabe, G. Angew. Chem., Int. Ed. Engl. 1990, 29, 773-774.

[†] X-ray crystal structures.

⁽¹⁰⁾ Crystallization occurred from hot toluene (4a) or xylenes (4f) by vapor diffusion with petroleum ether. Single crystals were analyzed at 20 °C. 4a: monoclinic, space group $P2_1/n-C2_{2k}$ (No. 14), with a = 7.290(1) Å, b = 12.137(2) Å, c = 22.119(4) Å, $\beta = 91.88(3)^{\circ}$, V = 1955.9(10) Å³, Z = 4, $d_{abde} = 1.884$ g cm⁻³, and μ (Mo K α) = 6.956 mm⁻¹. 4f: monoclinic, space group $P2_1-C^2_2$ (No. 4), with a = 8.221(3) Å, b = 9.435(3) Å, c = 15.896(5) Å, $\beta = 91.03(3)^{\circ}$, V = 1232.8(7) Å³, Z = 2, $d_{abde} = 1.699$ g cm⁻³, and μ (Mo K α) = 5.530 mm⁻¹. After Patterson synthesis and refinement (SHELXTL/PC), standard discrepancy indices were R = 3.48 and $R_{\pi} = 3.56$ for 2516 reflections with $F > 4\sigma(F)$ in the case of 4a; for 4f, R = 3.25 and $R_{\pi} = 4.15$ for 2289 reflections with $F > 4\sigma(F)$. Anisotropic thermal parameters were used for the included hydrogens. The configuration of 4f was confirmed by Rogers η parameter refinement to 1.09(5). Rogers, D. Acta Crystallogr., Sect. A 1981, 37, 734-741.

Figure 1. Molecular structure of 4a, shown with 50% thermal ellipsoids. Hydrogen atoms other than those shown (assumed positions) are omitted for clarity. Selected bond distances (Å) and angles (deg): Ir(1)-N(1)= 1.981(7), Ir(1)-O(1) = 2.030(6), O(1)-C(2) = 1.281(11), C(2)-O(2)= 1.222(12), N(1)-S(1) = 1.629(7), N(1)-Ir(1)-O(1) = 80.3(3).

Figure 2. Molecular structure of 4f, shown with 35% thermal ellipsoids. Hydrogen atoms other than those shown (assumed positions) are omitted for clarity. Selected bond distances (Å) and angles (deg): Ir(1)-N(1)= 1.977(9), Ir(1)-O(1) = 2.043(16), O(1)-C(2) = 1.222(20), C(2)-O(2) = 1.220(16), N(1)-S(1) = 1.646(9), N(1)-Ir(1)-O(1) = 78.8(5).

7-10. Comparison of $\nu_{CO} = 1684$ cm⁻¹ for 4a and $\nu_{CO} = 1650$ cm⁻¹ for 7a suggests reduced donation of electron density from O to Ir upon coordinative saturation. Further, whereas 4c ($\nu_{CO} = 1672$ cm⁻¹, br) shows a single set of resonances in its NMR spectrum at ambient temperatures, 7c ($\nu_{CO} = 1645$ cm⁻¹, br) shows two sets of absorptions which coalesce at elevated temperatures (ca. 90 °C at 400 MHz) and whose ratio changes with solvent. These data point to the presence of rotameric forms of *N*-Cbz-substituted complexes which interconvert rapidly on the NMR time scale at ambient temperatures in the case of 4 because the unsaturated Ir competes successfully with the carbonyl group for electron density from N. Racemic 3g and 1 afford yellow (±)-12 (98% yield, two rotamers, configuration at S undetermined) directly, showing the possibility of side-chain coordination.

Evaporation of a red solution of 4e in CH_2Cl_2 ($\nu_{CO} = 1642$, 1659 cm⁻¹) leaves a yellow solid (in KBr, $\nu_{CO} = 1553$, 1570, 1653 cm⁻¹) which redissolves rapidly to give a red solution in noncoordinating solvents, properties ascribed to interconversion of red 4e in solution and a yellow dimer in the solid.^{4b,16}

Significantly, addition of ligand PMe_3 , PMe_2Ph , or CO to chiral 4 proceeds within seconds with high diastereoselectivity

 $(\geq 50:1 \text{ for 4d and 4f},^{17} \geq 25:1 \text{ for 4b, yields} \geq 89\%)$ to produce the isomer in which R and Cp^{*} are syn,¹⁸ results ascribed to preferred attack of the ligand from the side of the metallacycle unhindered by R.¹⁹ The possibility that an aryl substituted played a special role (entering into C-H agostic^{20,21} or η^2 -coordination²²) was discounted by (a) normal NMR chemical shifts for aryl protons⁹ and (b) examination of the structure of 4f:¹⁰ the Ir atom is only 0.19 Å away from the mean plane of the C_6H_5 ring, but the distance between Ir and H(9pa), and nearest hydrogen of the C_6H_5 ring, is ca. 3.6 Å. As in 4a, the chelate ring is nearly planar (all five atoms are less than 0.022 Å from the mean chelate plane), although some distortion is suggested by the distances of the Cp* centroid and S (0.099 and 0.378 Å, respectively) from that plane. The syn arrangement of C_6H_5 and $CH_3C_6H_4$ substituents (angle between mean planes, 19°) is an interesting contrast to the anti arrangement proposed for structurally uncharacterized boronderived Lewis acids based on 3 and related species.²³

Complexes 4 are unique coordinatively unsaturated derivatives of amino acids which enter into highly diastereoselective, rapid complexation reactions directed by steric interactions with nonpolar side chains, findings which we feel have relevance to the design of both chiral transition metal³ and group 13²³ catalysts. Studies of the addition of other ligands to 4, the regioselectivity of complex formation from peptides, and the use of other metal fragments are underway.

Acknowledgment. We thank the ASU VP for Research for partial support of this work and Johnson Matthey for a loan of iridium salts. Dr. Ron Nieman and Camil Joubran graciously performed NOE and VT NMR experiments, and the NSF (CHE-88-13109, CHE-92-14799, and BBS 88-04992) and ASU provided funds for vital NMR instrumentation.

Supplementary Material Available: Spectral data and preparations of 20 compounds and crystallographic data and refinement information for 4a and 4f (64 pages); listing of observed and calculated structure factors for 4a and 4f (14 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm edition of this journal, and can be ordered from the ACS; see any current masthead page for ordering information.

(16) We cannot exclude the possibility of oligomerization, but see: Brown, L. D.; Itoh, K.; Suzuki, H.; Hirai, K.; Ibers, J. A. J. Am. Chem. Soc. 1978, 100, 8232-8238.

(17) Reaction of Cp*IrPMe₃Cl₂, 3d, and K₂CO₃ in CH₃CN gave a mixture of 7d and its presumed diastereomer 11d (1:4), from which 11d was isolated (67%). In toluene- d_e at 110 °C, 7d was unchanged after 17 h (¹H NMR) but had decomposed significantly after 85 h, although signals for 11d were not detected. Attempts to synthesize 11b and 11f so far have not been successful.

(18) NOE experiments indicated syn orientation of Cp^{*} and R (7b, 7f, 9b) and of PMe₃ and methine H (7b, 7f), ref 9. Addition of PMe₃ to 4d and of PMe₂Ph to 4b is presumed to proceed in the same fashion.

(19) Addition of PPh₃ to 4b appears to (a) produce a mixture (6:1) of adducts of unassigned configuration (presumably 10b and its diastereomer) and (b) be readily reversible at room temperature.

(20) A related Cp*Ir-phenylglycine complex shows an agostic interaction: Grotjahn, D., unpublished results.

(21) Brookhart, M.; Green, M. L. H.; Wong, L.-L. Prog. Inorg. Chem. 1988, 36, 1-124. Crabtree, R. H.; Hamilton, D. G. Adv. Organomet. Chem. 1988, 28, 299-338.

(22) Harman, W. D.; Sekine, M.; Taube, H. J. Am. Chem. Soc. 1988, 110, 5725-5731.

(23) Deloux, L.; Srebnik, M. Chem. Rev. 1993, 93, 763-784 and references therein.