

Letter pubs.acs.org/OrgLett

Regioselective Transfer Hydrodeuteration of Alkenes with a Hydrogen Deuteride Surrogate Using $B(C_6F_5)_3$ Catalysis

Johannes C. L. Walker[®] and Martin Oestreich^{*®}

Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany

Supporting Information

ABSTRACT: A regioselective hydrodeuteration of alkenes using monodeuterated cyclohexa-1,4-dienes as surrogates for R3 hydrogen deuteride (HD) gas is reported. The metal-free process proceeds under $B(C_6F_5)_3$ catalysis presumably by R^1 deuteride abstraction to form borodeuteride $[DB(C_6F_5)_3]^{-1}$ and highly Brønsted-acidic Wheland intermediates. Low catalyst loadings (2.5 mol %) are used, and the reaction proceeds at room temperature.

he hydrogenation of alkenes is an important transformation within synthetic chemistry.¹ Advances in catalyst design have produced an array of conditions capable of chemo-, regio-, and stereoselective hydrogenation that also exhibit impressive functional-group tolerance and have led to its widespread application within industry and academia.^{1,2} Conventionally, dihydrogen gas (H_2) is used, but many examples of the use of deuterium gas (D_2) have also been reported.³ By contrast, the use of the isotopically mixed congener hydrogen deuteride (HD) is exceptionally rare (Scheme 1, top). 4-6

In part, this scarcity is due to the difficulty in discriminating between the two isotopes and selectively producing one of the two possible product regioisomers. Using a ZnO catalyst, Tanaka and co-workers achieved the hydrodeuteration of buta-1,3-diene with a modest 3:1 selectivity in favor of the internally deuterated product (Scheme 1, bottom).⁴ In a mechanistic

study, Murahashi and co-workers observed the transfer hydrodeuteration of norbornadiene from a deuterated 1,3diazinane using palladium catalysis in 70% isotopic purity.⁵ To the best of our knowledge, no further reports of hydrodeuteration with HD have been disclosed to date.

Instead, alkene hydrodeuteration is often achieved by hydrometalation followed by deuterolysis (or deuterometalation and hydrogenolysis).⁷ Using hydroboration, Brown and Murray demonstrated that, by employing BH_3/D^+ or BD_3/H^+ , it was possible to prepare both regioisomers of hydrodeuterated norbornene in high isotopic purity (95 and 82%, respectively).⁸ However, poor regioselectivity for the hydroboration of styrenes⁹ and the two-step nature of the process somewhat limit its utility. Gronowitz and co-workers also reported the regioselective hydrozirconation/deuterolysis of styrenes, but this was accompanied by a number of side reactions.¹⁰

As part of our research program into the design of easy-tohandle surrogates of industrially relevant gases,¹¹ we recently exploited cyclohexa-1,4-diene 1 as an H₂ equivalent (Scheme 2, top).^{12,13} By using the strong Lewis acid $B(C_6F_5)_{32}$,^{14,15} the transfer hydrogenation of alkenes could be effected at room temperature, producing only mesitylene as a byproduct. Computations suggested a stepwise mechanism involving distinct borohydride and Brønsted-acidic Wheland intermediates.^{12b} Recognizing this formal desymmetrization of H₂, we postulated that incorporating D and H at the formally hydridic and protic positions of the surrogate (as in 2, Scheme 2, bottom) might enable the fully regioselective hydrodeuteration of alkenes for the first time.

The attempted synthesis of surrogate 2 began from 3,5dimethylbenzoic acid (3) (Scheme 3, top). Birch reduction to 4 and deuteration of the corresponding enolate¹⁶ followed by acid reduction furnished alcohol 5 in 84% yield over 3 steps. The

Scheme 2. Cyclohexa-1,4-dienes as H₂ or HD Surrogates

alcohol moiety could be activated as a leaving group by mesylation, but subsequent reaction with a range of hydride sources failed to deliver surrogate 2.¹⁷ Conversion of alcohol 5 to the corresponding iodide was not practical due to product instability (not shown); however, we wondered whether simple alcohol protection might provide a suitable alternative. We therefore prepared both the Et₃Si- and methyl-protected surrogates 7 and 8 in addition to mesylate 6 (Scheme 3, bottom).

We initially subjected surrogates 6-8 to our previously used conditions with alkene 9a using both B(C₆F₅)₃ and Brønsted acid catalysis.¹⁸ Cognizant of our B(C₆F₅)₃-catalyzed defunctionalization of primary tosylates with Et₃SiH,¹⁹ we also attempted the reaction in the presence of Et₃SiH in the hope that the aromatized surrogates 11-13 would be converted to mesitylene (14) in situ. Although mesylate 6 either decomposed or was unreactive (not shown), both silyl- and methyl-protected surrogates 7 and 8 reacted as desired. Full conversion of alkene 9a to hydrodeuterated product 10a was observed with B(C₆F₅)₃ (Table 1, entries 1 and 4), and the Brønsted acid Tf₂NH also provided acceptable conversions (entries 2 and 5). However, neither surrogate performed in the presence of Et₃SiH (entries 3 and 6). Because of its better mass economy, we proceeded with surrogate 8 under B(C₆F₅)₃ catalysis.

Table 1. Surrogate Screen for Transfer Hydrodeuteration^a

"All reactions performed on 0.1 mmol scale. ^bA: $B(C_6F_5)_3$ (10 mol %), CH_2Cl_2 (0.4 M), rt, 16 h. B: Tf_2NH (10 mol %), CH_2Cl_2 (0.25 M), rt, 16 h. C: $B(C_6F_5)_3$ (10 mol %), Et_3SiH (1.3 equiv), CH_2Cl_2 (0.4 M), rt, 16 h. ^cDetermined by ¹H NMR analysis with reference to unreacted alkene **9a**.

A brief optimization revealed that a lower catalyst loading (2.5 mol %) was sufficient for near full conversion of alkene 9a, although further reductions were detrimental to the reaction (Table 2, entries 1–3). Reaction efficiency at the lowest catalyst

Table 2. Optimization of the Transfer Hydrodeuteration^a

Ph 9a	"Ph + H H D OMe 8 (1.3 equiv)	$\begin{array}{c} \begin{array}{c} B(C_6F_5)_3\\ (mol\ \%)\\ \hline solvent\ (0.4\ M)\\ rt,\ 16\ h \end{array} \hspace{0.5cm} \begin{array}{c} H\\ Ph \end{array} \hspace{0.5cm} \begin{array}{c} P\\ Ph \end{array} \hspace{0.5cm} \begin{array}{c} H\\ Ph \end{array} \hspace{0.5cm} \begin{array}{c} \\ \end{array} \hspace{0.5cm} \begin{array}{c} \end{array} \hspace{0.5cm} \begin{array}{c} \\ \end{array} \hspace{0.5cm} \begin{array}{c} \\ \end{array} \hspace{0.5cm} \begin{array}{c} \\ \end{array} \hspace{0.5cm} \begin{array}{c} \\ \end{array} \hspace{0.5cm} \begin{array}{c} \end{array} \hspace{0.5cm} \begin{array}{c} \\ \end{array} \hspace{0.5cm} \begin{array}{c} \\ \end{array} \hspace{0.5cm} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \begin{array}{c} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \begin{array}{c} \\ \end{array} \hspace{0} \left(\begin{array}{c} \\ \end{array} \hspace{0} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \hspace{0} \end{array} \hspace{0} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \hspace \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \hspace{0} \end{array} \hspace \hspace \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \hspace \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace \hspace{0} \end{array} \hspace{0} \end{array} \hspace \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace \hspace{0} \end{array} \hspace{0} \hspace \hspace \end{array} \hspace \hspace \end{array} \hspace \hspace{0} \end{array} \hspace \hspace \end{array} \hspace \end{array} \hspace \hspace \end{array} \hspace \hspace{0} \end{array} \hspace \hspace{0} \end{array} \hspace \hspace{0} \end{array} \hspace{0} \end{array} \hspace \hspace{0} \hspace \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace \hspace{0} \end{array} \hspace \hspace{0} \end{array} \hspace \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace \hspace \hspace \hspace \hspace \end{array} \hspace \end{array} \hspace \hspace \end{array} \hspace \hspace \end{array} \hspace \hspace $	H OMe 13
entry	solvent	$B(C_6F_5)_3 \pmod{\%}$	yield ^b (%)
1	CH_2Cl_2	10	>99
2	CH_2Cl_2	2.5	99
3	CH_2Cl_2	1.0	72
4	C_6H_6	1.0	35
5	PhMe	1.0	79
6	$1,2-C_6H_4F_2$	1.0	94
7	$1,2-C_6H_4F_2$	2.5	96 (90) ^c
8 ^d	$1,2-C_6H_4F_2$	2.5	86
9	$1,2-C_6H_4F_2$	none	<1
10 ^e	$1,2-C_6H_4F_2$	5.0	85 ^c

^{*a*}All reactions performed on 0.1 mmol scale. ^{*b*}Determined by ¹H NMR analysis with reference to CH₂Br₂ as internal standard. ^{*c*}Isolated yield after flash column chromatography on silica gel. ^{*d*}Using 1.1 equiv of 8. ^{*e*}On 1 mmol scale.

loadings could be restored by switching to $1,2-C_6H_4F_2$ (entries 4–7), and high conversions were also achievable with only a small excess (1.1 equiv) of surrogate 8 (entry 8). No reaction was observed in the absence of $B(C_6F_5)_3$ (entry 9). The reaction could also be performed on 1 mmol scale with an isolated yield of 85% (entry 10).

With the optimized conditions in hand, we explored the scope of the hydrodeuteration (Scheme 4). In all cases, >19:1 deuterium incorporation was estimated by ¹H NMR analysis, and the synthesis of a single regioisomer was verified by the

Scheme 4. Scope of Hydrodeuteration^a

^{*a*}All reactions performed on 0.2 mmol scale. ^{*b*}Using 5.0 mol % $B(C_6F_5)_3$. ^{*c*}Contains 6% unreacted starting material. ^{*d*}Yield determined by ¹H NMR analysis with reference to CH_2Br_2 as internal standard. Isolated yield of 39% due to product volatility. ^{*e*}Also recovered 52% of unreacted starting material.

presence of a single resonance signal in the ²H NMR spectra. Electron-rich substituents afforded excellent reactivity with **10b–10d** all isolated in >90% yield. Electron-poor examples leading to **10e** and **10f** were less reactive. A higher catalyst loading was required to increase conversion to **10g** and enable easier purification (70% conversion with 2.5 mol % B(C_6F_5)₃). This result contrasts with that for **10d** bearing a Me group in the same position (90% yield), demonstrating the electron-withdrawing nature of the *meta*-OMe group.²⁰ Substrates bearing Lewis-basic, electron-withdrawing substituents such as nitro and amide groups did not react (see the Supporting Information).

Cyclic alkanes 10h-10j were all tolerated, although the efficiency of the reaction decreased with smaller ring sizes. We propose that the decreasing ring size led to a greater propensity for cationic ring expansion; this was evident in the increasing decomposition present in the ¹H NMR spectra of the crude reaction mixtures.²¹ Alkenes with acyclic aliphatic substitution were effective substrates, forming **10k** and **10l**, and selectivity for styrenes over alkenes lacking arene substitution was observed in the formation of **10m**. In this case, no product corresponding to the hydrodeuteration of the α -olefin was detected. Thiophene-containing **10n** was also formed in high yield, as was trisubstituted alkene **10o**. Other Lewis-basic heteroaromatic groups such as pyridine (no reaction) and furan (decomposition) were not tolerated (see the Supporting Information). Tetrasubstituted alkenes (no reaction) and purely aliphatic

alkenes (side reactions predominated to give complex mixtures) were also unsuitable substrates.

It is likely that the mechanism is analogous to that computationally determined for the $B(C_6F_5)_3$ -catalyzed transfer hydrogenation of alkenes.^{12b} Beginning with $B(C_6F_5)_3$, deuteride abstraction from 8 forms ion pair $I^+[DB(C_6F_5)_3]^-$, and subsequent protonation of alkene 9a by Wheland complex I^+ leads to $II^+[DB(C_6F_5)_3]^-$. Deuteride transfer then provides 10a and returns the $B(C_6F_5)_3$ catalyst (pathway 1, Scheme 5).

Recent calculations by Banerjee and Vanka suggest that the borohydride anion $[HB(C_6F_5)_3]^-$ may in fact be a spectator ion in related alkene hydrosilylation and imine hydrogenation chemistry, leading to the conclusion that $B(C_6F_5)_3$ takes on the role of an initiator rather than a bona fide catalyst.²² Indeed, we have shown that the reaction may be performed in the absence of $B(C_6F_5)_3$ (and therefore $[DB(C_6F_5)_3]^-$) using Brønsted acid catalysis (experiment 1, Scheme 6). Under these conditions, the

Scheme 6. Control Experiments

formal deuteride presumably originates from surrogate 8 directly (cf. pathway 2).¹⁸ In the present case, however, it appears that $[DB(C_6F_5)_3]^-$ can act as a nucleophile, performing the reaction with equimolar quantities of $B(C_6F_5)_3$, and surrogate 8 led to full conversion of 9a to 10a (experiment 2, Scheme 6). However, we cannot exclude the possibility that $[DB(C_6F_5)_3]^-$ and surrogate 8 act simultaneously as nucleophiles under catalytic conditions (pathways 1 and 2, respectively).

In any case, the regioselectivity of deuterium incorporation under both $B(C_6F_5)_3$ and Brønsted acid catalysis is consistent with the proposed mechanism. In accordance with a stepwise mechanism, performing the reaction in an open flask led to minimal reduction in overall conversion, suggesting the formation and reactivation of gaseous HD was not a major pathway (experiment 3, Scheme 6).²³ Indeed, during ¹H NMR

Organic Letters

monitoring of both the model reaction and the $B(C_6F_5)_3$ catalyzed decomposition of surrogate 8, no HD gas evolution was observed (see the Supporting Information).

In conclusion, we have reported the metal-free hydrodeuteration of alkenes using a cyclohexa-1,4-diene-based surrogate of HD gas. The stepwise mechanism provides a solution to the long-standing problem of achieving high levels of regioselectivity in hydrodeuteration chemistry. This represents a useful addition to the collection of methods for the isotopic labeling of organic compounds.²⁴

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.8b02718.

General procedures, experimental details, and characterization/spectral data for all compounds (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: martin.oestreich@tu-berlin.de.

Johannes C. L. Walker: 0000-0003-1045-7234 Martin Oestreich: 0000-0002-1487-9218

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was supported by the Alexander von Humboldt Foundation (Theodor Heuss Fellowship to J.C.L.W., 2017– 2018). M.O. is indebted to the Einstein Foundation Berlin for an endowed professorship.

REFERENCES

(1) (a) Noyori, R. Angew. Chem., Int. Ed. 2002, 41, 2008–2022.
(b) Knowles, W. S. Angew. Chem., Int. Ed. 2002, 41, 1998–2007.

(2) Handbook of Homogeneous Hydrogenation; de Vries, J. G., Elsevier, C. J., Eds.; Wiley-VCH: Weinheim, Germany, 2006.

(3) A Reaxys search for the deuteration of propene derivatives returns 346 individual reactions. For examples of the deuteration of α substituted styrenes, see: (a) Vidavsky, I.; Mandelbaum, A.; Tamiri, T.; Zitrin, S. Org. Mass Spectrom. 1991, 26, 287-292. (b) Hou, D.-R.; Reibenspies, J.; Colacot, T. J.; Burgess, K. Chem. - Eur. J. 2001, 7, 5391-5400. (c) Ishibashi, Y.; Bessho, Y.; Yoshimura, M.; Tsukamoto, M.; Kitamura, M. Angew. Chem., Int. Ed. 2005, 44, 7287-7290. (d) Yoshimura, M.; Ishibashi, Y.; Miyata, K.; Bessho, Y.; Tsukamoto, M.; Kitamura, M. Tetrahedron 2007, 63, 11399-11409. (e) Zhu, Y.; Fan, Y.; Burgess, K. J. Am. Chem. Soc. 2010, 132, 6249-6253. (f) Borràs, C.; Biosca, M.; Pàmies, O.; Diéguez, M. Organometallics 2015, 34, 5321-5334. (g) Yu, Y.-B.; Cheng, L.; Li, Y.-P.; Fu, Y.; Zhu, S.-F.; Zhou, Q.-L. Chem. Commun. 2016, 52, 4812-4815. (h) Biosca, M.; Magre, M.; Coll, M.; Pàmies, O.; Diéguez, M. Adv. Synth. Catal. 2017, 359, 2801–2814. (i) Liu, C.; Yuan, J.; Zhang, J.; Wang, Z.; Zhang, Z.; Zhang, W. Org. Lett. 2018, 20, 108-111.

(4) Okuhara, T.; Kondo, T.; Tanaka, K.-I. *J. Phys. Chem.* **1977**, *81*, 808–809. The same authors also used MoS₂ as catalyst and achieved a 1.5:1 selectivity in favor of the same product, see: Okuhara, T.; Tanaka, K.-I. *J. Chem. Soc., Chem. Commun.* **1976**, 199–200.

(5) Murahashi, S.-I.; Yano, T.; Hino, K.-i. *Tetrahedron Lett.* **1975**, 4235–4238.

(6) The use of HD in the laboratory is hampered by both its high cost (\$176/L at 96% isotopic purity, Cambridge Isotope Laboratories) and

the operational complexity of its synthesis, see: Fookson, A.; Pomerantz, P.; Rich, E. H. J. Res. Natl. Bur. Stand. **1951**, 47, 31–34.

(7) For reviews of hydrometalation chemistry, see: (a) Brown, H. C. Organic Synthesis via Organoboranes; Wiley: New York, 1975.
(b) Burgess, K.; Ohlmeyer, M. Chem. Rev. 1991, 91, 1179–1191. (c) Matteson, D. S. Stereodirected Synthesis with Organoboranes; Springer: New York, 1995; Chapter 2. (d) Wipf, P.; Kendall, C. Top. Organomet. Chem. 2004, 8, 1–25. (e) Chen, J.; Guo, J.; Lu, Z. Chin. J. Chem. 2018, 36, 1075–1109.

(8) Brown, H. C.; Murray, K. J. Tetrahedron 1986, 42, 5497-5504.

(9) Brown, H. C.; Sharp, R. L. J. Am. Chem. Soc. 1966, 88, 5851-5854.
(10) Karlsson, S.; Hallberg, A.; Gronowitz, S. J. Organomet. Chem. 1991, 403, 133-144.

(11) For a recent overview, see: Keess, S.; Oestreich, M. Chem. Sci. **2017**, 8, 4688-4695.

(12) (a) Chatterjee, I.; Oestreich, M. Angew. Chem., Int. Ed. 2015, 54, 1965–1968. (b) Chatterjee, I.; Qu, Z.-W.; Grimme, S.; Oestreich, M. Angew. Chem., Int. Ed. 2015, 54, 12158–12162.

(13) For another example of an alkene transfer hydrogenation using a cyclohexa-1,4-diene, see: Michelet, B.; Bour, C.; Gandon, V. *Chem.* - *Eur. J.* **2014**, *20*, 14488–14492.

(14) For a comprehensive review of $B(C_6F_5)_3$ -catalyzed Si-H and H-H bond activation, see: Oestreich, M.; Hermeke, J.; Mohr, J. *Chem. Soc. Rev.* **2015**, *44*, 2202–2220.

(15) For a review of mainly FLP- but also $B(C_6F_5)_3$ -catalyzed hydrogenation, see: Paradies, J. Angew. Chem., Int. Ed. **2014**, 53, 3552–3557 and references cited therein .

(16) Song, G.; Zheng, Z.; Wang, Y.; Yu, X. Org. Lett. **2016**, *18*, 6002–6005.

(17) Keess, S.; Oestreich, M. Chem. - Eur. J. 2017, 23, 5925-5928.

(18) Chatterjee, I.; Oestreich, M. Org. Lett. 2016, 18, 2463-2466.

(19) Chatterjee, I.; Porwal, D.; Oestreich, M. Angew. Chem., Int. Ed. 2017, 56, 3389-3391.

(20) The Hammett constants for *meta-* and *para-*methoxy groups are $\sigma_{\rm m} = 0.12$ and $\sigma_{\rm p} = -0.27$, respectively, see: Hansch, C.; Leo, A.; Taft, R. W. *Chem. Rev.* **1991**, *91*, 165–195.

(21) The synthesis of the cyclopropyl-substituted compound was therefore not attempted due to the low anticipated yield.

(22) Banerjee, S.; Vanka, K. ACS Catal. 2018, 8, 6163-6176.

(23) Hounjet, L. J.; Bannwarth, C.; Garon, C. N.; Caputo, C. B.; Grimme, S.; Stephan, D. W. Angew. Chem., Int. Ed. **2013**, *52*, 7492– 7495.

(24) (a) Lloyd-Jones, G. C.; Muñoz, M. P. J. Labelled Compd. Radiopharm. 2007, 50, 1072–1087. (b) Gant, T. G. J. Med. Chem. 2014, 57, 3595–3611. (c) Dickschat, J. S. Eur. J. Org. Chem. 2017, 4872– 4882. (d) Atzrodt, J.; Derdau, V.; Kerr, W. J.; Reid, M. Angew. Chem., Int. Ed. 2018, 57, 1758–1784.