Empirical force field calculations. Part 28¹. Conformations and pseudorotations of 1,3-dioxolane and some methyl-substituted derivatives

M. van Duin, M. A. Hoefnagel, J. M. A. Baas* and B. van de Graaf

Laboratory of Organic Chemistry, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands (Received March 24th, 1987)

Abstract. The conformations and pseudorotations of 1,3-dioxolane (1), *cis*- and *trans*-4,5-dimethyl-1,3-dioxolane (2 and 3) and the corresponding 2,2-dimethyl derivatives (4, 5 and 6) have been studied with molecular mechanics using the MM2 force field. Free pseudorotation occurs in 1 and 4 ($\Delta E = 1.5$ kJ/mol) and pseudolibration in 2, 3, 5 and 6 ($\Delta E = 6, 7, 11$ and 14 kJ/mol, respectively). The steric energies of 3 and 6 are lower than those of 2 and 5 since the 4- and 5-methyl groups can both occupy a pseudo-equatorial position in the minimum energy conformation of the *trans* isomers. Estimates of ΔH_f° (25° C, gas, kJ/mol) are: 2, -376.1; 3, -380.5; 4, -387.2; 5, -464.4; 6, -470.1. Vicinal proton coupling constants were calculated from the appropriate torsion angles and averaged over the pseudorotation circuit. They are in good agreement with experimental values. The 1,3-dioxolanes can be used as model compounds for borate monoesters of vicinal diols. The ¹³C chemical shifts of C(2) in 1,3-dioxolanes correlate well with the ¹¹B chemical shifts in the corresponding borate monoesters.

Introduction

The rates of formation² and the stabilities³ of borate esters of dihydroxy compounds have been studied extensively. Little is known about the conformations of these cyclic compounds. So far, only a few X-ray investigations have been carried out on borate diesters⁴; large side-chains may influence the ring conformations strongly. Therefore, we decided to use 1,3-dioxolanes as model compounds for the corresponding borate monoesters and to perform molecular mechanics calculations on a number of 1,3-dioxolanes as an extension of our studies on the simple vicinal diols¹. This decision is based on the correlation between ¹³C chemical shifts of C(2) in the 1,3-dioxolanes and the ¹¹B chemical shifts of the corresponding borate monoesters (Fig. 1). Such a correlation is indicative of conformational similarity¹⁴. The correspondence of Raman spectra of 1,3-dioxolanes with those of borate esters¹⁵ supports this view. The computational results for 1,3-dioxolanes presented in this paper will be compared with experimental and calculated data for borate esters in a forthcoming paper.

The compounds studied are 1,3-dioxolane (1), *cis*- and *trans*-4,5-dimethyl-1,3-dioxolane (2 and 3), 2,2-dimethyl-1,3-dioxolane (4) and *cis*- and *trans*-2,2,4,5-tetramethyl-1,3-dioxolane (5 and 6). The results are compared with ¹H NMR data.

Experimental

Calculations

The calculations were performed using DELPH1, the Delft molecular-mechanics computer program¹⁶, and Allinger's MM2 empirical force field¹⁷. We did not use the refined MM2(82) force field¹⁸ because of the complicated dependency of the natural bond length l'_o of the C-O bond on certain torsion angles, especially with respect to the derivation of first and second derivatives in our

Fig. 1. Correlation of ¹³C chemical shifts (Me_4Si as internal standard) of C(2) in 1,3-dioxolanes vs. ¹¹B chemical shifts (0.1 M boric acid as external reference) of the corresponding borate monoesters ^{3b,5}. The letters refer to the parent diols. The borate binding site is given in parentheses: glycol⁶ (a); 1,2-propanediol⁶ (b); meso 2,3-butanediol⁶ (c); pinacol⁶ (d); glycerol (1,2)^{5b} (e); D-glucitol (1,2/5,6)⁷ (f); (3,4)⁷ (g); D-mannitol (1,2/5,6)⁸ (h); D-ribonic acid (2,3)⁹ (i); (4,5)^{9,10} (j); meso tartaric acid^{5b} (k); galactaric acid (2,3/4,5)¹¹ (l); β -D-fructopyranose (1,2)¹² (m); (2,3)^{12b} (n); (4,5)¹² (o); α -D-gluco-furanose (1,2)^{8,13} (p); (5,6)¹³ (q) (mean ¹³C chemical shifts for g, j, m, o and p).

full matrix *Newton-Raphson* scheme. The improvement of the results for small cyclic dioxygen compounds using MM2(82) instead of MM2 is limited. The dielectric constant (ε) was set at the standard value^{17a} of 1.5; some results using a value of 80 are also reported. The calculations for 2 and 5 and for 3 and 6 were carried out for the *S*.*R* and *S*.*S* configurations, respectively. The pseudo-rotation paths were obtained by torsion angle driving, using the *Lagrange* multiplier method¹⁹. The minima and transition states were found by unconstrained optimization. Because of symmetry, it is not necessary to investigate the complete pseudorotation paths.

The conformational changes observed during the pseudorotation of the five-membered rings are described by the changes in the ring torsion angles θ_i (i = 0-4; Fig. 2). According to *Altona* et al.²⁰, θ_i can be approximated with two parameters, namely the phase angle of pseudorotation φ ($0-2\pi$) and the maximum torsion angle θ_{max} ($\approx 40^\circ$):

$$\theta_i = \theta_{\max} \cdot \cos\left(\varphi + 0.8 \cdot i \cdot \pi\right) \tag{1}$$

The phase angle ϕ can be calculated from:

$$\tan(\varphi) = (\theta_2 + \theta_4 - \theta_1 - \theta_3)/(3.0777 \cdot \theta_0)$$
⁽²⁾

In this way, half chairs or twist forms (T) are obtained at $\varphi = 0.2n\pi$ (n = 0, 1, 2-9) and bent forms or envelopes (E) at $\varphi = (0.1 + 0.2n)\pi$ (Fig. 2). θ_0 is assigned to the unique endocyclic torsion angle around C(4)-C(5). The designations T and E are preceded by superscripts and/or subscripts which indicate which ring atoms lie above and/or below the plane formed by the remaining ring atoms (Fig. 2). An alternative way to describe the

pseudorotation is to use a puckering amplitude q along with a phase angle of pseudorotation²⁷. We prefer the use of φ in conjunction with torsion angles.

Energy values versus phase angles of pseudorotation for 1-6 are presented in Figs. 3-8. A table containing steric energies, exact values of the phase angles of pseudorotation, point groups and the values of the endocyclic torsion angles of all relevant optima can be obtained from the authors upon request. Steric energies (kJ/mol) of the global minima are: 1, 70.4996 (ε 1.5), 60.8069 (ε 80); 2, 78.7768 (ε 1.5), 69.0209 (ε 80); 3, 74.8844 (ε 1.5), 66.3076 (ε 80); 4, 78.5655 (ε 1.5); 5, 87.1389 (ε 1.5); 6, 80.5709 (ε 1.5). The minima and transition states are characterized by six zero-eigenvalues of the final force constants matrix. The transition states have one negative eigenvalue. The supplementary material also contains data on the planar forms characterized by two negative eigenvalues.

The vicinal proton coupling constants ${}^{3}J(4,5)$ were calculated from the dihedral angles H-C(4)-C(5)-H using the semi-empirical equation of *Haasnoot* et al.²¹, especially derived for rings containing oxygen. Because the pseudorotational barriers for **1-6** are low, ${}^{3}J(4,5)$ has to be averaged²²:

$${}^{3}J(4,5) = \int_{0}^{2\pi} {}^{3}J(4,5)(\phi) \cdot x(\phi) \, \mathrm{d}\phi \tag{3}$$

This integration was carried out numerically with steps of 0.1π . The fractions $x(\varphi)$ with a certain phase angle of pseudorotation φ were calculated, using the *Boltzmann* equation ($T = 25^{\circ}$ C), from the energies obtained by molecular mechanics. The calculated and experimental ${}^{3}J(4,5)$ values are compared in Table I.

Fig. 2. Pseudorotation in 1,3-dioxolane.

1,3-Dioxolane	$^{3}J(4,5)$ (Hz)			
	Calculated			Evennimontal
	Min [φ(rad)/π]	Max $[\phi(rad)/\pi]$	Averaged ^d	Experimental
1	5.6/5.2 (0.0 and 1.0)	5.8/9.0 (0.5 and 1.5)	5.7/7.1	6.3/6.8ª
2 3 4	4.2 (0.0 and 1.0 1.2 (1.0) 5.6/5.2 (0.0 and 1.0)	6.9 (0.5 and 1.5) 9.0 (0.0) 5.7/9.0 (0.5 and 1.5)	5.6 7.4 5.7/7.0	6.2 8.1 6.3/6.3 ^{a,b}
5 6	4.6 (0.0 and 1.0) 1.9 (1.0)	6.9 (0.5 and 1.5) 9.0 (0.0)	5.6 8.6	5.9° 8.4°

Table I Experimental and calculated vicinal proton coupling constants of 1,3-dioxolanes 1-6.

^a Using ¹³C satellites^{5,6}. ^b Reference 23a. ^c Reference 31a. ^d Using Eqn. 3.

The heats of formation ΔH_f° were calculated from the steric energies of the global minima ($\varepsilon 1.5$) and the increments of the MM2 force field^{17a}. The heat content to account for the admixture of higher energy conformations (POP, kJ/mol) was calculated from the energy profiles of the pseudorotation paths in the same way as for ${}^3J(4,5)$: 1, 0.7; 2, 1.5; 3, 1.0; 4, 0.8; 5, 0.8; 6, 1.7. The heat content due to free and slightly hindered internal rotations (TOR) was taken to be equal to $\frac{1}{2}RT$ for 1 and 4 (free pseudorotors) and equal to one time 1.5 kJ/mol) are: 1, -299.4; 2, -376.1; 3, -380.5; 4, -387.2; 5, -464.4; 6, -470.1. Allinger et al.^{17b} have given a calculated value for 1 of -299.7 kJ/mol but, as far as we can see, they ignore the quantity POP.

¹H NMR

The ¹H NMR spectra of solutions of 1-3 in CDCl₃ were recorded using a Nicolet NT-200 WB spectrometer at 25 °C with Me₄Si as internal standard. The chemical shifts δ (\pm 0.01 ppm) and coupling constants J (\pm 0.1 Hz) were determined with the LAME spin simulation program (RMS < 0.1). ¹H NMR data not given in Table I: 1 δ (2) 4.90, δ (4) 3.88, ²J(4,4') - 10.0, ¹J(¹H, ¹³C) 149.0; 2 δ (2) 5.11 and 4.80, δ (4) 4.10, δ (Me) 1.16, ³J(Me₄, 4) 6.3, ⁴J(Me₄, 5) -0.2, ⁵J(Me₄, Me₅) 0.0; 3 δ (2) 4.94, δ (4) 3.57, δ (Me) 1.28, ³J(Me₄, 4) 6.1, ⁴J(Me₄, 5) - 0.2, ⁵J(Me₄, Me₅) 0.0. These values are in agreement with literature data²³ as far as available. Compounds 2 and 3 were prepared according to *Garner* and *Lucas*²⁴.

To test the significance of the calculated steric energies, an equilibration was carried out for a solution of formaldehyde (F; 9.2 M) and *meso* and *racemic* 2,3-butanediol (M and R; 1.0 M each) in D_2O/D_2SO_4 (50/50, v/v) at 25°C:

$$M + F \stackrel{H^+}{\longleftrightarrow} 2 + H_2O$$
$$R + F \stackrel{H^+}{\longleftrightarrow} 3 + H_2O$$

The experimental value of $\Delta(\Delta G)$ (3.8 kJ/mol) is compared with the calculated enthalpy differences²⁵, obtained from molecular mechanics:

 $\Delta(\Delta G)_{\text{expt}} = -R \cdot T \cdot \ln\left([\mathbf{2}] \cdot [\mathbf{R}]\right) / ([\mathbf{3}] \cdot [\mathbf{M}])$ (4)

$$\Delta(\Delta H)_{\text{caed}} = E_2 + E_R - E_3 - E_M \tag{5}$$

Discussion

Pseudorotation was used by *Kilpatrick* et al.²⁶ to describe the dynamic deformation²⁷ or conformational flexibility²⁸ of the puckered cyclopentane ring. Introduction of heteroatoms and substitution increase the pseudorotational energy barrier $(\Delta E)^{27-29}$ and result in a pseudolibration $(\Delta E > RT)^{29}$ or even in a rigid conformation $(\Delta E \ge RT)$. Furthermore, deviations from the ideal pseudorotation path, as defined by Eqn. 1, occur (mainly ring flattening). Dipole measurements³⁰, ¹H NMR^{23,29a,29c,31}, IR³² and microwave spectroscopy³³ and X-ray diffraction³⁴ have demonstrated that 1,3-dioxolanes are indeed puckered. However, in general, these techniques do not provide explicit information with respect to the actual conformations of the minima and transition states on the pseudorotation paths³⁵.

1,3-Dioxolane (1)

The pseudorotation path of 1 is rather simple due to the $C_{\rm s}$ symmetry in the equivalent minima ²E and ₂E ($\theta_0 = 0^\circ$) and the C_2 symmetry in the equivalent transition states ${}_{4}^{5}T$ and ${}_{5}^{4}T(\theta_{0}^{2} = \pm 39^{\circ})$ (Fig. 3). The symmetry elements of ${}^{2}E$, ${}_{2}E$, ${}_{4}^{4}T$ and ${}_{5}^{4}T$ are also symmetry elements of the pseudorotation. Going from the minima to the transition states, the increase in torsion and valency angle energy (2.5 and 1.3 kJ/mol) is only partly compensated for by the decrease in the energy from the electrostatic and non-bonded interactions (1.6 and 0.9 kJ/mol). This dissection of energy terms is of course force field dependent, but it is notable that the total torsion angle energy of the forms ${}^{2}E$ and ${}_{2}E$, containing eclipsed bonds around C(4) - C(5), is lower than that of ${}_{4}^{5}T$ and ${}_{5}^{4}T$, in which θ_{0} is almost staggered. The calculated steric energy difference ($\Delta E = 1.5 \text{ kJ/mol}$) is somewhat larger than the experimental value of 0.5-0.6 kJ/mol^{32,33}. Because $\Delta E < RT$ at 25°C, free pseudorotation occurs. The calculated ΔH_{ℓ}° is close to the experimental value ($-299.4 \text{ vs.} -297.5 \pm 0.8 \text{ kJ/mol}^{37}$).

Fig. 3. Calculated energy profiles of the pseudorotation in 1,3-dioxolane 1 (full line $\varepsilon = 1.5$, broken line $\varepsilon = 80$).

Quantum-chemical calculations either give very flat conformations³⁸ (MINDO/3) or still larger pseudorotation barriers^{27,28} ($\Delta E \ge 3.3$ kJ/mol). Contrary to our results, energy minima are predicted²⁸ for $\frac{5}{4}T$ and $\frac{4}{5}T$ and transition states for ${}^{2}E$ and ${}_{2}E$ using a 6-31G * basis, but without complete optimization of the geometries. Microwave spectroscopy³³ of 1 indicates that both ${}^{2}E$ and ${}^{5}_{4}T$ are maxima on the pseudorotation path (with ${}_{4}^{5}T$ 0.1 kJ/mol higher in energy than ${}^{2}E$) and that the geometry of the minimum energy conformation is near $_{1}E$ and $_{1}^{5}T$. We conclude that both molecular mechanics and quantum-chemical calculations correctly show that the unsubstituted 1 is an almost free pseudorotor. Very minor changes in force-field parameters may influence the balance of the various energy terms and, in this way, the positions of minima and transition states on the pseudorotation paths, as calculated using the MM method. Regarding the calculated value of the barrier height and the efforts involved in its application, the MM method is to be preferred.

4,5-Dimethyl-substituted 1,3-dioxolanes (2 and 3)

Upon cis-4,5-dimethyl substitution of 1, the C_s symmetry of ${}^{2}E$ and ${}_{2}E$ is preserved, whereas the C_2 symmetry of ${}^{5}_{4}T$ and ${}^{4}_{5}T$ is lost. As a result of the latter, ${}^{2}E$ and ${}_{2}E$ are non-equivalent in the case of 2. The conformation of minimum energy is ${}_{2}E$ in which C(2) at the flap of the envelope points away from the cis-4,5-dimethyl groups (Fig. 4). At first sight,

Fig. 4. Calculated energy profiles of the pseudorotation in cis-(4S, 5R)-dimethyl-1,3-dioxolane 2 (full line $\varepsilon = 1.5$, broken line $\varepsilon = 80$).

it seems unusual that the global minimum $_2E$ contains a pair of eclipsed methyl groups along C(4)-C(5). Pseudorotation into both directions, however, moves one of these methyl groups into a pseudo-axial position with a more strongly unfavourable interaction with the C(2)methylene moiety. The two equivalent transition states, $_1^2T$ and $_3^2T$ ($\Delta E = 6.23$ kJ/mol), enclose the relative minimum 2E ($\Delta E = 6.20$ kJ/mol). These conformations are very similar and $_1^2T$, $_2^2E$ and $_3^2T$ form a single transition state around $\varphi = 0.5\pi$. Because $\Delta E = 6.2$ kJ/mol, pseudolibration occurs for 2.

Upon *trans*-4,5-dimethyl substitution of 1, the C_s symmetry of ²E and ₂E is lost, whereas the C_2 symmetry of ⁴T and ⁴T is conserved. In the case of 3, ²E and ₂E vanish as minima due to steric hindrance between C(2) at the flap of the envelope and either methyl group at C(4) or C(5) (Fig. 5). This unfavourable interaction is diminished by increasing θ_0 and

Fig. 5. Calculated energy profiles of the pseudorotation in trans-(4S,5S)-dimethyl-1,3-dioxolane **3** (full line $\varepsilon = 1.5$, broken line $\varepsilon = 80$).

two equivalent minima ${}^{5}E$ and ${}_{4}E$ are found ($\theta_{0} = 37^{\circ}$). In these minima, both methyl substituents are in pseudo-equatorial positions, in contrast with the pseudo-axial positions in the relative minimum ${}_{5}^{4}T$. The two minima ${}^{5}E$ and ${}_{4}E$ are separated by a negligible barrier ${}_{5}^{4}T$ and the relative minimum ${}_{5}^{4}T$ is enclosed between two equivalent transition states ${}_{3}^{4}T$ and ${}_{5}^{1}T$. In a simplified description, the pseudorotation of 3 involves a single minimum around $\varphi = 0$ and a single transition state around $\varphi = 1.0\pi$ with $\Delta E = 7.2 \text{ kJ/mol}$ (pseudolibration).

For both 2 and 3, it has been shown using ¹³C NMR that the barriers to pseudorotation are low and that the methyl substituents are probably in an uncompressed environment^{6,22c}. The calculated ΔH_f° of 3 is 4.4 kJ/mol smaller than that of 2. This reflects the fact that only in 3 can both methyl groups occupy a pseudo-equatorial position in the minimum energy conformation.

Upon increasing ε from 1.5 to 80, the overall pictures for 1-3 as discussed above are retained (Figs. 3-5, broken lines). The optima at $\varepsilon = 80$ are close to those at $\varepsilon = 1.5$. The electrostatic interactions almost vanish at $\varepsilon = 80$, which results in small increases in the pseudorotational barriers, consistent with literature data³⁹.

2,2-Dimethyl-substituted 1,3-dioxolanes (4, 5 and 6)

Upon 2,2-dimethyl substitution of 1-3, the symmetry of the parent compounds is preserved, but the pseudorotation paths are affected drastically. In ²E and ₂E of 4, unfavourable interactions between one of the geminal methyl groups at C(2) and the transannular hydrogen atoms at C(4) or C(5) occur. As a result, contrary to 1, the global minima of 4 are ${}_{4}^{5}T$ and ${}_{5}^{4}T$ ($\theta_{0} = \pm 39^{\circ}$) (Fig. 6). The relative minima ${}^{2}E$ and ${}_{2}E$ are enclosed by equivalent transition states ${}_{1}E$ and ${}_{3}E$ and by ${}^{1}E$ and ${}^{3}E$. The regions between ${}_{1}E$ and ${}_{3}E$ and between ${}^{1}E$ and ${}^{3}E$ can be seen as two transition states around $\varphi = 0.5\pi$ and $\varphi = 1.5\pi$, respectively. $\Delta E(1.5 \text{ kJ/mol})$ equals that of 1, indicating free pseudorotation. The calculated ΔH_{f}° differs considerably from the value obtained from increments by Stern and Dorer⁴⁰ (-387.2 vs. -416.7 \text{ kJ/mol}).

For 5, the difference in conformational energy between ${}^{2}E$ and ${}_{2}E$ is enlarged, relative to that for 2, due to the

Fig. 6. Calculated energy profile of the pseudorotation in 2,2-dimethyl-1,3-dioxolane **4**.

increased steric hindrance in ²E caused by the 2,2-dimethyl substitution (Fig. 7). The general picture of **2** is preserved, but the global minima ${}_{5}E$ and ${}_{4}E$ are close to those of **4**. The pseudorotation of **5** is characterized by a rather flat region between $\varphi = 1.1\pi$ and $\varphi = 1.9\pi$ and a transition region around $\varphi = 0.5\pi$ ($\Delta E = 10.9$ kJ/mol).

Finally, for 6, the pseudorotation is similar to that for 3, although it is somewhat simplified due to the merging of the optima of 3 around $\varphi = 0$ into the single minimum ${}_{4}^{5}T$ (Fig. 8). The height of the broad barrier at $\varphi = 0.7\pi - 1.3\pi$ is enlarged ($\Delta E = 13.9 \text{ kJ/mol}$), due to steric hindrance between the geminal methyl groups at C(2) and the 4- and 5-methyl groups in the pseudo-axial position. In this case, the conformational energy of the planar form ($\Delta E = 15.4 \text{ kJ/mol}$) is close to this barrier. Therefore, considerable ring flattening can occur during the pseudorotation of 6.

Both for 5 and 6, 1,3-transannular non-bonded interactions have been demonstrated using ¹³C NMR⁴¹. The difference between the calculated ΔH_f° values of 5 and 6 (5.7 kJ/mol) is somewhat larger than the difference between the corresponding values of 2 and 3, in accord with the increased size of the groups at C(2).

Fig. 7. Calculated energy profile of the pseudorotation in cis-(2,2,4S,5R)-tetramethyl-1,3-dioxolane 5.

Fig. 8. Calculated energy profile of the pseudorotation in trans-(2,2,4S,5S)-tetramethyl-1,3-dioxolane **6**.

¹H NMR experiments

Differences between experimental and calculated values of ${}^{3}J(4,5)$ (Table I) are smaller than 0.8 Hz. This suggests that the energy profiles obtained by molecular mechanics are realistic. Table I also contains the minimum and maximum values of ${}^{3}J(4,5)$ at the appropriate phase angles φ . Only in the case of *trans* 4,5-disubstituted 1,3-dioxolanes 3 and 6 is the calculation of ${}^{3}J(4,5)$ rather sensitive for φ and the differences in $E(\varphi)$.

From the equilibration at 25°C, a value for $\Delta(\Delta G)_{expt}$ of 3.8 kJ/mol is obtained, which is in agreement with experimental data for other substituted 1,3-dioxolanes⁴² and borate monoesters⁴³. We calculated $\Delta(\Delta H) = 2.5$ kJ/mol for $\varepsilon = 1.5$ and for $\varepsilon = 80$ in aprotic media⁴⁴. At $\varepsilon = 80$ in protic media, a correction should be made for specific solvation⁴⁵ and $\Delta(\Delta H)$ decreases to 1.3 kJ/mol. The calculated entropies are very similar for M and R, but that for 3 is about $8 \text{ J} \cdot \text{mol}^{-1} \cdot ^{\circ}\text{C}^{-1}$ larger than that for 2. Taking this into account brings $\Delta(\Delta G)_{ealed}$ close to the experimental value.

Acknowledgements

This investigation was carried out under the auspices of the Netherlands Foundation for Chemical Research (SON) with support from the Netherlands Organization for the Advancement of Pure Research (ZWO). We wish to thank Mr. A. Sinnema for recording the ¹H NMR spectra.

References

- ¹ Part 27: M. van Duin, J. M. A. Baas and B. van de Graaf, J. Org. Chem. 51, 1298 (1986).
- ² R. Pizer and R. Selzer, Inorg. Chem. 23, 3023 (1984) and references cited therein.
- ^{3a} M. van Duin, J. A. Peters, A. P. G. Kieboom and H. van Bekkum, Tetrahedron **40**, 2901 (1984) and references cited therein;
- ^bM. van Duin, J. A. Peters, A. P. G. Kieboom and H. van Bekkum, Tetrahedron **41**, 3411 (1985) and references cited therein.
- ⁴ J. D. Dunitz, D. M. Hawley, D. Mikloš, D. N. J. White, Yu. Berlin, R. Marušić and V. Prelog, Helv. Chim. Acta 54, 1709 (1971); H. Nakamura, Y. Iitaka, T. Kitahara, T. Okazaki and Y. Okami, J. Antibiotics 30, 714 (1977); H. van Koningsveld, M. van Duin and J. C. Jansen, "The pentasodium(I) borate diester of racemic tartrate", in preparation.

- ^{5a} M. Makkee, A. P. G. Kieboom and H. van Bekkum, Recl. Trav. Chim. Pays-Bas 104, 230 (1985);
- ^b M. van Duin, unpublished results.
- ⁶ E. L. Eliel, V. S. Rao and K. M. Pietrusiewicz, Org. Magn. Res. **12**, 461 (1979).
- ⁷ J. Kuszmann, P. Sohár, G. Horváth, E. Tomori and M. Idei, Carbohydr. Res. 79, 243 (1980).
- ⁸ P. A. J. Gorin and M. Mazurek, Can. J. Chem. **51**, 3277 (1973). ⁹ G. Aslani-Shotorbani, J. G. Buchanan, A. R. Edgar, D. Hender-
- son and P. Shahidi, Tetrahedron Lett. 21, 1791 (1980). ¹⁰ J. G. Buchanan, M. E. Chacón-Fuertes, A. R. Edgar, S. J.
- Moorhouse, D. I. Rawson and R. H. Wightman, Tetrahedron Lett. 21, 1793 (1980).
- ¹¹ I. J. Burden and J. F. Stoddart, J. Chem. Soc., Perkin I 675 (1975).
- ^{12a} E. J. Prisbe, J. Smejkal, J. P. H. Verheyden and J. G. Moffatt, J. Org. Chem. 41, 1836 (1976);
- ^b G. de Wit, Ph.D. Thesis, Delft University of Technology, 1979.
- ¹³ A. Lipták and P. Nánási, Carbohydr. Res. 86, 133 (1980).
- ¹⁴ For the 2,2-dimethyl-1,3-dioxolanes, the correlation is not as good as for the 1,3-dioxolanes. This is probably due to the fact that the former systems are often further derivatized.
- ¹⁵ S. A. Barker, E. J. Bourne, R. M. Pinkard and D. H. Whiffen, J. Chem. Soc. 802 and 807 (1959).
- ¹⁶ B. van de Graaf, J. M. A. Baas and A. van Veen, Recl. Trav. Chim. Pays-Bas 99, 175 (1980).
- ^{17a} N. L. Allinger and Y. H. Yuh, QCPE 13, 395 (1981);
- ^b N. L. Allinger, S. H.-M. Chang, D. H. Glaser and H. Hönig, Isr. J. Chem. 20, 51 (1980); the conversion from calories to Joules was made using a factor of 4.184 J cal⁻¹.
- ¹⁸ L. Nørskov-Lauritsen and N. L. Allinger, J. Comput. Chem. 5, 326 (1984).
- ¹⁹ B. van de Graaf and J. M. A. Baas, J. Comput. Chem. 5, 314 (1984).
- ²⁰ C. Altona, H. J. Geise and C. Romers, Tetrahedron 24, 13 (1968); C. Altona and M. Sundaralingam, J. Am. Chem. Soc. 94, 8205 (1972).
- ²¹ C. A. G. Haasnoot, F. A. A. M. de Leeuw and C. Altona, Tetrahedron 36, 2783 (1980).
- ^{22a} V. Tabacik, Tetrahedron Lett. 9, 555 (1968);
- ^b V. Tabacik, Tetrahedron Lett. 9, 561 (1968);
- ^o W. E. Willy, G. Binsch and E. L. Eliel, J. Am. Chem. Soc. 92, 5394 (1970);
- ^d W. K. Olson and J. L. Sussman, J. Am. Chem. Soc. 104, 270 (1982).
- ^{23a} R. U. Lemieux, J. D. Stevens and R. R. Fraser, Can. J. Chem. 40, 1955 (1962);
- ^b R. J. Abraham, J. Chem. Soc. 256 (1965);
- ^c M. Anteunis, F. Anteunis-de Ketelaere and F. Borremans, Bull. Soc. Chim. Belg. 80, 701 (1971);
- ^d F. Kametani and Y. Sumi, Chem. Pharm. Bull. 20, 1479 (1972).
- ²⁴ H. K. Garner and H. J. Lucas, J. Am. Chem. Soc. 72, 5497 (1950).
- ²⁵ Actually, $\Delta(\Delta H)_{calcd} = H_2 + H_R H_3 H_M$ with $H = \overline{E} + \sum_{increments^{1/2a}}$. The incremental corrections for 2 and 3 and for

- **M** and **R**, respectively, are equal and thus: $\Delta(\Delta H)_{\text{calcd}} = \Delta(\Delta \overline{E}) = \overline{E}_2 + \overline{E}_R - \overline{E}_3 - \overline{E}_M.$
- ²⁶ J. E. Kilpatrick, K. S. Pitzer and R. Spitzer, J. Am. Chem. Soc. **69**, 2483 (1947).
- ²⁷ D. Cremer and J. A. Pople, J. Am. Chem. Soc. 97, 1358 (1975).
- ²⁸ D. Cremer, Isr. J. Chem. 23, 72 (1983).
- ^{29a} C. Romers, C. Altona, H. R. Buys and E. Havinga, Top. Stereochem. 4, 39 (1969);
- ^b E. L. Eliel, Acc. Chem. Res. 3, 1 (1970);
- ^c J. F. Stoddart, "Stercochemistry of Carbohydrates", Wiley-Interscience, New York, 1971, p. 194.
- ³⁰ C. W. N. Cumper and A. I. Vogel, J. Chem. Soc. 3521 (1959); B. A. Arbousow, Bull. Soc. Chim. France 1311 (1960); B. A. Arbuzov and L. K. Yuldasheva, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk 1728 (1962), Chem. Abstr. 58, 12392g (1963).
- ^{31a} F. A. L. Anet, J. Am. Chem. Soc. 84, 747 (1962);
- ^b J. Chuche, G. Dana and M.-R. Monot, Bull. Soc. Chim. France 3300 (1967);
- ^c C. Altona and A. P. M. van der Veek, Tetrahedron 24, 4377 (1968);
- ^d *T. J. Batterham*, "NMR Spectra of Simple Heterocycles", Wiley-Interscience, New York, 1973, p. 382;
- ^e C. A. de Lange, J. Magn. Res. 21, 37 (1976).
- ³² J. R. Durig and D. W. Wertz, J. Chem. Phys. **49**, 675 (1968); J. A. Greenhouse and H. L. Strauss, J. Chem. Phys. **50**, 124 (1969); R. Davidson and P. A. Warsop, J. Chem. Soc., Faraday Trans. II **68**, 1875 (1972).
- ³³ P. A. Baron and D. O. Harris, J. Mol. Spectrosc. 49, 70 (1974).
- ³⁴ S. Furberg and O. Hassel, Acta Chem. Scand. 4, 1584 (1950).
 ³⁵ Data on 1,3-dioxolanes with alkoxy substituents at C(2)^{29a,31c,34}
- ³⁵ Data on 1,3-dioxolanes with alkoxy substituents at C(2)^{29a,31c,34} should be interpreted with care, since dipole–dipole interactions³⁶ can influence the ring conformation.
- ³⁶ J. Dale, Tetrahedron **30**, 1683 (1974).
- ³⁷ J. D. Cox and G. Pilcher, "Thermochemistry of Organic and Organometallic Compounds", Academic Press, New York, 1970, p. 222.
- ³⁸ P. Felker, D. M. Hayes and L. A. Hull, Theoret. Chim. Acta 55, 293 (1980).
- ³⁹ V. T. Aleksanyan and B. G. Antipov, Raman Spectroscopy, Proc. of the 8th Int. Conf., Eds. J. Lascombe and P. V. Huong, Wiley, Chichester, 1982, p. 605, Chem. Abstr. 99, 175112j (1983).
- ⁰ J. H. Stern and F. H. Dorer, J. Phys. Chem. 66, 97 (1962).
- ⁴¹ Y. Senda, J. Ishiyama and S. Imaizumi, Bull. Chem. Soc. Jpn. **50**, 2813 (1977).
- ⁴² P. H. Hermans, Z. Physik, Chem. 113, 337 (1924); J. A. Mills, Chem. Ind. 633 (1954); J. A. Mills, Advan. Carbohydrate Chem. 10, 1 (1955).
- ⁴³ J. M. Conner and V. C. Bulgrin, J. Inorg. Nucl. Chem. 29, 1953 (1967).
- ⁴⁴ \overleftarrow{E} values for **M** and **R** ($\varepsilon = 1.5$ and $\varepsilon = 80$, aprotic media) are taken from reference 1.
- ⁴⁵ For $\varepsilon = 80$ in protic media, the \overline{E} values are corrected for the stabilization of the gauche O-C-C-O forms (3.3 kJ/mol) as a result of the formation of cyclic diol-water structures. The \overline{E} values thus obtained are 19.7 and 18.0 kJ/mol, respectively.