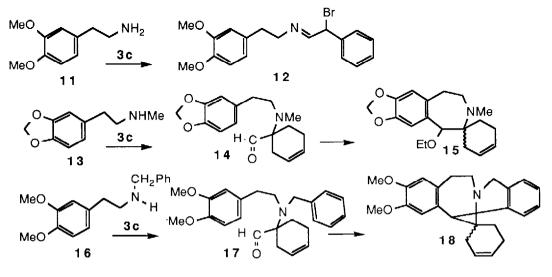

"HOMO-*PICTET-SPENGLER* " CYCLIZATION OF TRYPTAMINES: AN EASY ACCESS TO THE HEXAHYDROAZEPINO[4,5-b]INDOLE RING SYSTEM.

Jean-Yves Laronze^{*}, Christine Gauvin-Hussenet and Jean Lévy

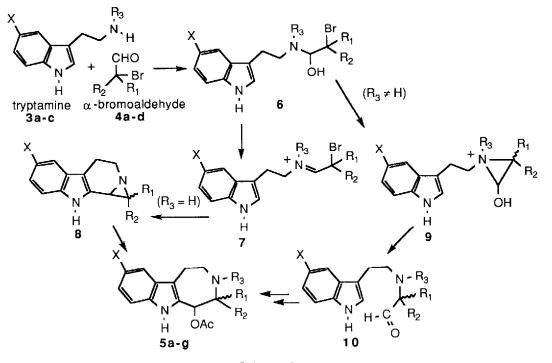
Laboratoire de Transformations et Synthèse de Substances Naturelles, associé au CNRS, Faculté de Pharmacie, Université de Reims Champagne-Ardenne, 51, rue Cognacq-Jay, F 51096 REIMS, FRANCE.


Summary: The title compounds were prepared in one step from tryptamines 3 and α -bromoaldehydes 4.

Synthesis of the hexahydroazepino[4,5-b]indole system through ring expansion of a tetrahydro-B-carboline has been little studied until now: the model compound **2a** (Scheme 1) was prepared by Julia¹ from 1-chloromethyl-B-carboline **1a** via the intermediate aziridine. Later, Kuehne obtained compound **1b** through the Pictet-Spengler cyclization of tryptamine with methyl chloropyruvate and further rearranged it to his highly potent azepinoindolic synthon **2b**².

We have now studied the reaction of tryptamines with some α -bromoaldehydes³ along similar lines, in order to prepare 4,4-disubstituted hexahydroazepino[4,5-b] indoles (Scheme 3, Table). We found that heating tryptamine **3a** with α -bromo aldehydes **4a-d** in acetic acid at 70°C for 15 hrs afforded in one step the 5-acetoxy-4,4-dialkylhexahydroazepinoindoles **5a-d** in yields ranging from 34 to 75% With 5-methoxytryptamine **3b** and bromoaldehydes **4a** or **4c** the synthesis of **5e** and **5f**, respectively, was completed within only 2 hrs. On the contrary, reaction of *N(b)-methyl* tryptamine **3c** with bromoaldehyde **4c** was very sluggish: compound **5g** was isolated (42%) after a 100 hr heating in AcOH, together with aldehyde **10** (X = H, R₁, R₂ = -CH₂-CH=CH-CH₂-CH₂-; R₃ = Me) (11%) and methyltryptamine. When the reaction was stopped after 6 hrs, aldehyde **10** was isolated (36%) as the sole reaction product. Compound **10** could further be cyclized in AcOH to **5g**.

With N(b)-unsubstituted tryptamines (R₃ = H) the initially formed carbinolamine 6 gives iminium 7 which leads to aziridinium 8 along (concerted?) Pictet-Spengler cyclization and bromine elimination. Finally, attack by an acetate gives the 5-acetoxyhexahydroazepinoindoles **5a-f**. Electron enrichment of the indole nucleus by a methoxy group (X=OMe) accelerates the Pictet-Spengler cyclization. No diastereoselection was observed in the formation of **5c-d** and **5f**-g with regard to the poor discrimination between R₁ and R₂. With the N(b)-substituted tryptamine (R₃ = Me) carbinolamine 6 rearranges to aldehyde **10**⁶ *via* aziridinium 9. Further cyclization of **10** to **5g** is precedented⁷.

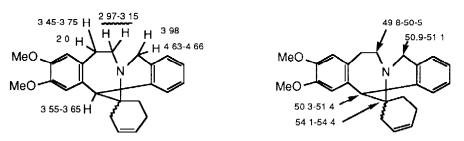


Intermediacy of 7 or 10 (depending on the substitution of N(b) in tryptamines) was substantiated by the reactions of some α -bromoaldehydes with phenethylamine derivatives (scheme 2). In no case was the one-step cyclication in AcOH observed. Heating homoveratrylamine 11 and bromoaldehyde 3c in AcOH yielded bromoimine 12 which could not be further cyclized. Treatment of N-methylhomopiperonylamine 13 with 3c and K₂CO₃ in refluxing DME for 4 days gave aldehyde 14 (48 %), which was cyclized to benzazepine 15 (24%) upon reaction with TFAA and BF₃ etherate (probably through an acylal intermediate⁸) A similar sequence starting from N-benzylhomoveratrylamine 16 and 3c gave aldehyde 17 (51%) whose cyclization (BF₃ etherate) was accompanied with a supplementary ring closure affecting the benzene ring, which yielded compound 18 (66%) along a not uncommon reaction pathway^{9,10}

The use of α -bromoaldehydes in such "homo-Pictet-Spengler" cyclizations then appears of interest in the synthesis of fused azepino- ring systems. Further applications in the azepinoindole series are under current study

Aknowledgements: We thank Drs D Royer, Dr D Cartier and Mr P.Sigaut for spectral measurements, and CNRS and ADIR company for financial support.

Scheme 3


tryptamine			α -bromoaldehyde			time of reaction	product (vield %)
	Х	R3		R ₁	R ₂	readion	
3 a	Н	н	4 a	Me	Me	15 hrs	5a (34)
3 a	Н	Н	4 b	Et	Et	15 hrs	5b (56)
3a	н	н	4c	-CH2-CH=CH-CH2-CH2-		15 hrs	5c ^a (70)
3 a	н	н	4d ⁴	-CH2-CH=C(Me)-CH2-CH2-		15 hrs	5da(75)
3b	MeO	Ĥ	4 a	Me	` Ñe -	2 hrs	5e (66)
3 b	MeO	Н	4c	-CH2-CH=CH-CH2-CH2-		2 hrs	5fa(72)
3 c	Н	Me	4c	-	CH-CH2-CH2-	100 hrs	5g a (42)
				-			

a mixture of isomers

<u>Table</u>5

References and Notes

- 1. Julia, M.; Bagot, J., Siffert, O. Bull. Soc. Chim. France 1973, 1424.
- Kuehne, M. E.; Bohnert, J. C., Bornmann, W. G.; Kirkemo, C. L.; Kuehne, S. E., Seaton, P. J., Zebovitz, Y. C. J. Org. Chem. 1985, 50, 919.
- The starting aldehydes were brominated in nearly quantitative yield by using the CuBr2 bromination method developed for ketones by Brown: Brown, E. C.; Rogié, M. M; Rathke, M. M. J. Amer. Chem. Soc. 1968, 90, 6218
- 4 1-methyl-4-bromo-4-formylcyclohexene **4d** was prepared by Diels-Alder cyclization of isoprene with 2-bromoacrolein.
- All new products were fully characterized by their UV, IR, mass, ¹H (300 MHz) and ¹³C (75 MHz) NMR spectra. Most salient features for compounds **5a-g** were an easy loss of AcOH from the molecular ion in the mass spectra (M-60) and a low field proton at ~ 5.7 ppm (H-5) in the ¹H NMR spectra C-4 and C-5 were seen at 42-44 and 72-75 ppm, respectively, in the ¹³C NMR spectra.
- 6 Reaction of α -halogenocarbonyl compounds with secondary amines is known to yield α aminocarbonyl derivatives: De Kimpe, N.; Verhe, R. *The Chemistry of \alpha-haloketones, \alpha-haloaldehydes and \alpha-haloimines J Wiley, Ed, New-York, 1988.*
- 7 Nagata, W.; Hirai, S.; Okumura, T.; Kawata, K J. Amer. Chem Soc. 1968, 90, 1650
- 8 Trost, B M; Vercauteren, J Tetrahedron Lett. 1985, 26, 131
- 9 Obtained as a mixture of isomers. The following ¹H and ¹³C data were supported by COSY measurements.

- 10. Brown, D. W.; Dyke, S F ; Hardy, G ; Sainsbury, M Tetrahedron Lett., 1968, 2609
- 11. Ladd, D. L.; Weinstock, J.; Wise, M., Gessner, G. W.; Sawyer, J L , Flaim, K. E J. Med. Chem. 1986, 29 , 1904.

(Received in France 27 November 1990)