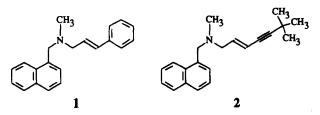
Antifungal Agents, II¹⁾:

Synthesis and Antifungal Activities of Aryl-1*H*-pyrrol-2-yl-1*H*-imidazol-1-yl-methane Derivatives with Unsaturated Chains

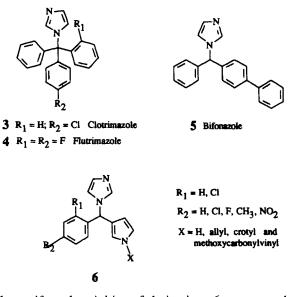
Silvio Massa^a), Rino Ragno^b), Giulio Cesare Porretta^b), Antonello Mai^a), Augusta Retico^c), Marco Artico^c), and Nicola Simonetti^c)

^{a)} Dipartimento di Studi Farmaceutici, Università "La Sapienza", P. le A. Moro 5, 00185 Roma, Italy

b) Dipartimento di Studi di Chimica e Tecnologia delle Sostanze Biologicamente Attive, Università "La Sapienza", P. le A. Moro 5, 00185 Roma, Italy


^{c)} Istituto di Microbiologia, Facoltà di Farmacia, Università "La Sapienza", P. le A. Moro 5, 00185 Roma, Italy

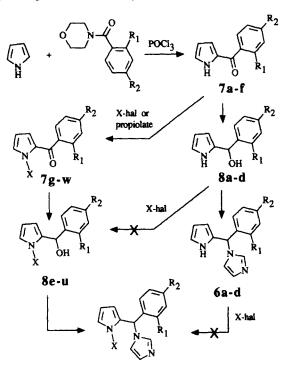
Received October 5, 1992


Synthese und antimykotische Wirkung von Aryl-1*H*-pyrrol-1*H*-imidazol-1-yl-methan-Derivaten mit ungesättigten Seitenketten

The synthesis and antifungal activities of aryl-1*H*-pyrrol-2-yl-1*H*-imidazol-1-yl-methanes having allyl, crotyl, and acrylate chains linked to the *N*-pyrrole atom and substituted at phenyl ring by Cl, F, CH₃, and NO₂ groups are reported. *In vitro* tests against *Candida albicans* and *Candida spp.* showed 2,4-dichlorophenyl-1-allyl-1*H*-pyrrol-2-yl-1*H*-imidazol-1-ylmethane to be the most potent derivative with activities comparable to those of ketoconazole and slightly inferior to those of bifonazole and miconazole. Some structure-activity relationships are discussed. Herstellung und antimykotische Eigenschaften der Titelverbindungen mit Allyl-, Crotyl- und Acrylat-Gruppen am Pyrrol-N-Atom und Cl-, F-, CH₃und NO₂-substituierten Phenylgruppen werden beschrieben. *In vitro* tests gegen *Candida albicans* und *Candida* ssp. zeigten, daß 2,4-Dichlorphenyl 1-allyl-1*H*-pyrrol-1-yl-1*H*-imidazol-1-yl-methan die wirksamste Verbindung ist. Ihre Wirkung ist mit der von Ketoconazol vergleichbar und etwas schwächer als die von Bifonazol und Miconazol. Einige Struktur-Wirkungsbeziehungen werden diskutiert.

Antifungal agents containing unsaturated chains have received great attention after the discovery of naftifine (1), a new lead compound among modern classes investigated as potential chemotherapeutic substances against fungal diseases. Naftifine is actually marketed in some countries and terbinaftine (2), a new improved derivative of the allylamine series, is under clinical development. Both derivatives are characterized by the presence of an unsaturated chain in their structure, which was found to be essential for their antimicrobial power²⁻⁴).

Pursuing our studies⁵⁻¹¹⁾ on pyrrole antimycotics related to clotrimazole (3), flutrimazole (4), and bifonazole (5), we decided to synthesize derivatives of aryl-1*H*-pyrrol-2-yl-1*H*-imidazol-1-yl-methane containing an unsaturated chain linked to the N-atom of the pyrrole ring. The new compounds which share structural features with compounds 1-5 are represented by the general formula 6. The substituents at the phenyl ring were chosen in the range from electronreleasing to electron-withdrawing groups, with particular reference to chlorine and fluorine. These halogens were capable to enhance the antifungal potency in the imidazole and triazole series, as demonstrated by the high activity shown by clotrimazole, flutrimazole, fluconazole, miconazole, ketoconazole and other analogues.



The antifungal activities of derivatives $\mathbf{6}$ were tested *in vitro* against *Candida albicans* and *Candida spp.* in comparison with miconazole, bifonazole and ketoconazole, three potent commercially available antimycotic drugs.

Arch. Pharm. (Weinheim) 326, 539-546 (1993) © VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1993 0365-6233/93/0909-0539 \$ 5.00 + .25/0

Chemistry

The synthesis of derivatives **6** is depicted in Scheme 1. -Reaction of pyrrole with the proper 4-aroylmorpholine (*Vilsmeier-Haack*) afforded the aroyl-1*H*-pyrrol-2-yl ketones **7a-f**, some of which were reduced to the corresponding carbinols **8a-d** by NaBH₄.

6e-u

 $R_1 = H$, Cl; $R_2 = H$, Cl, F, CH₃, NO₂, 2,4-Cl₂; X = allyl, crotyl, methoxycarbonylvinyl

Scheme 1

Treatment of **8a-d** with 1,1'-carbonyldiimidazole (CDI) afforded the imidazoles **6a-d**. Attempt to alkylate **6a-d** at the pyrrole-N with allyl bromide/ K_2CO_3 was unsuccessful. Therefore, the title imidazoles **6e-u** were prepared starting from ketones **7a-f** which were alkylated to afford compounds **7g-w** which were reduced by NaBH₄ to carbinols **8e-u**. These on treatment with CDI afforded the required imidazoles **6e-u**.

Alkylation of **8a-d** to achieve the corresponding alcohols **8e-j** by reaction with allyl bromide/ K_2CO_3 failed, whereas alkylation of ketones **7a-f** was easily performed with allyl bromide, crotyl bromide, and by methyl propiolate.

Microbiological Part

Materials and Methods

Derivatives **6a-u** were tested *in vitro* for antimycotic activities against *Candida albicans* and *Candida spp*. The antimycotic potency was evaluated by means of the minimal inhibitory concentration (MIC) using the serial dilution test in a liquid nutrient medium.

MIC was defined as the lowest concentration of tested substance at which there was no macroscopic colonial growth in comparison with a blank experiment after the preset incubation time. For the preparation of the dilution series 5 mg of active ingredient were dissolved in DMSO (1 ml) and the solution was treated on shaking with distilled water (9 ml). Further progressive double dilutions with test medium furnished the required concentrations in the range from 0.25 to 256 μ g/ml. Blanks were prepared with the above reported quantities of water and DMSO.

Bifonazole, miconazole, and ketoconazole were used as standard controls. Mean MIC values nX (C_{max} at least 256 µg/ml) and R% were calculated as reported⁵⁻¹¹). MIC₅₀ and MIC₉₀ refer to MIC for 50% and 90% of strains, respectively. Strains with MIC > 256 µg/ml were regarded as resistant (R) and were expressed in percent (%).

All tested microorganisms were preliminarily incubated at 37°C for 18 h on *Sabouraud* (BBL) dextrose broth. The microorganisms were added to media containing the antimycotic agents. Experiments were carried out in *Sabouraud* broth (Difco) at pH 7.2 and 5.8 using inocula of 10³/ml of fungi. The MICs were determined after 24 h of growth at 37°C.

Candida albicans and *Candida* spp. freshly isolated from hospitalized patients (strains were identified using standard methods). The specimens used were: 40 strains of *Candida albicans* and 12 strains of *Candida spp.* (3 *C. guilliermondii*, 3 *C. lipolytica*, 3 *C. krusei*, and 3 *C. parapsilosis*).

Results and Discussion

The results of the *in vitro* screening of **6a-u** measured at pH 7.2 and pH 5.8 are reported in Tables 4 and 5. Data refer to R%, nX, MIC_{50} , and MIC_{90} values in comparison with those of miconazole, bifonazole and ketoconazole.

At pH 7.2 compounds **6f**, **6j**, **6l**, **6p**, and **6u**, like the control substances, show no resistant strains against *Candida albicans*. The same result, with the exception of compound **6f**, was observed for these derivatives at pH 7.2 against *Candida* spp. Various strains were resistant to all other test compounds.

Data of Table 4 indicate that the most potent compound is the dichloro derivative 6j which is as potent as ketoconazole and twice less potent than bifonazole and miconazole against either *Candida albicans* or *Candida* spp. Derivatives 6f, 6l, 6p, and 6u are from four to sixteen times less potent than controls and their activity is decreasing in the order 6p > 6u, 6l > 6f.

As evinced from data of Table 5 the antifungal powers of derivatives **6** at pH 5.8 are very similar to those observed at pH 7.2. Again derivative **6j** is the most potent test compound, although its potencies were slightly inferior to those of ketoconazole.

Some interesting relationships between chemical structure of compounds 6 and their activities can be drawn from these data.

Chlorine markedly influenced the antifungal activity. A clear example in this sense is furnished by the reciprocal comparison of data of compounds **6a,e,k,q**, **6b,f,l,r** and **6d,j,p,u**. In fact, introduction of Cl at C-4 of the phenyl ring increased the antifungal activity, which became the highest for the 2,4-dichloro derivatives. Replacement of chlorine with fluorine led to less potent derivatives (**6g,m,s**). Similar behaviour was observed when methyl and nitro groups replaced chlorine at C-4 of the phenyl ring.

We can, therefore, state that substituents at the phenyl ring were strongly affecting the antifungal activity, which was decreasing in the order $2,4-Cl_2>4-Cl>4-NO_2>4-F>4-CH_3, 4-H.$

A large increase in activity was observed when an unsaturated chain was introduced at the pyrrole-N. The best activity was shown by derivatives bearing the allyl side chain. The high activity observed was retained when crotyl replaced the allyl chain, whereas derivatives with the β acrylate portion and those deprived of an unsaturated chain were scarcely and/or totally inactive, respectively. In conclusion, derivatives **6j** and **6p**, which contain 2,4dichlorophenyl and 1-allyl-1*H*-pyrrol-2-yl or 1-crotyl-1*H*pyrrol-2-yl moieties, are the most active among the derivatives **6a-u**. Their activities against *Candida albicans* and *Candida spp*. are comparable or slightly inferior to those of ketoconazole and from two to four times inferior to those of miconazole and bifonazole.

Attempts to introduce the unsaturated chains of naftifine and terbinaftine at the N-pyrrole position are in progress.

This work was supported by the financial aid of the "Istituto Pasteur-Fondazione Cenci Bolognetti".

Table 1: Chemical and Physical Data of Derivatives 7

N H	×	R	R ₂		$\mathbf{x}_{1}^{\mathbf{R}_{2}}$		Y		R2	Ļ.	R ₂ R ₁
				CH ₂	(СН3			O=(OCH	12	
7	a-f	•		7 g-l		city	7 m-r		001		
	n .	D .		Formula	MP (°C)		Analy	sis (%):	Calcd. Found		
Compd.	RI	K 2	Yield (%)	(Mol. weight)	Solvent		С	н	N	Cl	F
7a	H	Н	100	C11H9NO	78-79		77.17	5.30	8.18		
				171.20	n-hexane		77.01	5.27	8.22		
7 b	н	Cl	77	C11H8CINO	117-8		64.25	3.92	6.81	17.24	
7.		P	74	205.65	n-hexane		64.19	3.88	6.75	17.31	10.04
7 c	Н	F	74	C11H8FNO 189.19	106-7 n-hexane		69.84	4.26 4.27	7.40 7.33		10.04 10.00
7 d	н	CH ₃	44	C ₁₂ H ₁₁ NO	118-9		69.89 77.81	4.27 5.99	7.56		10.00
74		5113		185.20	<i>n</i> -hexane		77.75	5.91	7.59		
7 e	н	NO ₂	80	C11H8N2O3	166-8		61.11	3.73	12.96		
••		2		216.20	cyclohexane/benze	пе	61.20	3.77	12.89		
7 f	CI	Cl	22	C11H7Cl2NO	120-1		55.03	2.94	5.83	29.53	
				240.09	n-hexane/benzene		55.12	2.99	5.77	29.60	
7 g	Н	н	100	C14H13NO	oil		79.59	6.20	6.63		
				211.27			79.49	6.16	6.70		
7 h	Н	Cl	85	C14H12CINO	oil		68.44	4.92	5.70	14.43	
		_		245.71			68.39	4.91	5.73	14.39	
7i	н	F	75	C ₁₄ H ₁₂ FNO	oil		73.35	5.28	6.11		8.29
	.,	~	<i>(</i> 0	229.26			73.27	5.22	6.15		8.33
7j	Н	CH3	60	C15H15NO 225.29	oil		79.97	6.71	6.22 6.29		
7 k	н	NO ₂	92	C14H12N2O3	89-90		79.90 65.62	6.65 4.72	10.93		
7 6		1102	72	256.26	cyclohexane		65.70	4.72	10.93		
71	Ci	CI	100	C14H11Cl2NO			60.02	3.96	5.00	25.31	
	с.	01	100	280.16	cyclohexane		60.11	3.96	4.99	25.31	
7m	Н	H	100	C15H15NO	oil		79.97	6.71	6.22	43.41	
				225.29			79.89	6.69	6.26		
7 n	н	CI	100	C15H14CINO	oil		69.37	5.43	5.39	13.65	
				259.74			69.29	5.39	5.42	13.72	
70	н	F	90	C ₁₅ H ₁₄ FNO	oil		74.06	5.80	5.76		7.81
_				243.28			73.98	5.71	5.80		7.73
7р	н	CH3	85	C16H17NO	oil		80.30	7.16	5.85		
-				239.32			80.37	7.18	5.78		
7q	н	NO ₂	100	C15H14N2O3	oil		66.66	5.22	10.36		
7r	CI	CI	100	270.29	- 17		66.71	5.25	10.31		
/1	CI	CI	100	C15H13Cl2NO 294.18	oil		61,24	4.45	4.76 4.80	24.10	
7 s	н	н	100	C15H13NO3	oil		61.18 70.58	4.39 5.13	4.80 5.49	24.15	
/ 3	**	••	100	255.26	UII		70.58	5.15	5.49		
7t	н	CI	71	C15H12CINO3	122-3		62.19	4.17	4.83	12.24	
••	-			289.72	cyclohexane		62.13	4.16	4.87	12.24	
7 u	н	F	100	C15H13FNO3	141-2		65.93	4.43	5.13		6.95
					yclohexane/benzer	ne	65.99	4.47	5.09		6.90
7 v	н	CH ₃	64	C16H15NO3	119-20		71.36	5.61	5.20		
		-		269.30	cyclohexane		71.35	5.60	5.19		
7 w	CI	CI	100	C15H11Cl2NO	3 oil		55.58	3.42	4.32	21.87	
				324.17			55.61	3.44	4.31	21.81	

Experimental Part

M.p.: Büchi 530 (uncorr.).- IR-spectra (nujol mulls): Perkin Elmer 1310.- ¹H-NMR-spectra: Varian EM-390 (90 mHz, TMS).- Column chromatography: silica gel Merck (70-230 Mesh) and alumina Merck (70-230 Mesh).- TLC: Stratocrom SIF Carlo Erba (silica gel precoated plates with fluorescent indicator) and Stratocrom ALF Carlo Erba (Al₂O₃ precoated plates with fluorescent indicator).- Microanalyses: Laboratories of Prof. A. Pietrogrande, University of Padova (Italy).- Org. extracts were dried over Na₂SO₄.- Evaporation of solvents under reduced pressure.-Chemical and physical data of compounds **7a-w, 8a-u**, and **6a-u**: Tables 1-3.

Preparation of 4-morpholinamides¹²⁾

Morpholides were prepared in high yield by treatment of the appropriate acid chloride in CH_2Cl_2 with two equivalents of morpholine and were recrystallized from *n*-hexane/cyclohexane.

Aryl-1H-pyrrol-2-yl ketones 7a-f13)

The appropriate amide was dissolved in $POCl_3$ (0.2 ml/mmole of amide), and the solution, protected from moisture, was stirred at room temp. until the formation of the complex was complete. A 0.2 M solution of pyrrole (1 equivalent relative to amide) in anhydrous 1,2-dichloroethane

Table 2: Chemical and Physical Data of Derivatives 8

NH NH) ОН	R ₁		OH R	1	OH	RI		OH	R ₂ R ₁
8	a-d			8 e-j	СН3	8 k-p		`осн _;	3 8 q-u	
Compd.	Rj	R ₂	Yield (%)	Formula (Mol. weight)	MP (°C) Solvent	Analysi C	s: Calcd. Found H	N	Cl	F
8a	Н	Н	100	C11H11NO3	oil	76.28	6.40	8.09		
۹L		~	100	173.22 C11H10CINO3		76.19	6.38 4.85	8.13 6.74	17.07	
8b	н	CI	100	207.66	oil	63.62 63.55	4.80	6.74	17.15	
8 c	н	NO_2	100	C11H10N2O3	112-3	60.55	4.62	12.84	1.110	
•••		1.02	100	218.21	cyclohexane	60.66	4.66	12.79		
8 d	Cl	Cl	100	C11H9Cl2NO	oil	54.57	3.75	5.79	29.29	
				242.11		54.70	3.77	5.71	29.20	
8e	H	н	100	C14H15NO 213.18	lio	78.84	7.09	6.57		
	**	~	100	C14H14CINO	71 72	78.91 67.88	7.11 5.70	6.50 5.65	14.31	
8f	н	CI	100	247.73	71-72 n-hexane	67.95	5.79	5.58	14.31	
8 g	н	F	100	C14H14FNO	63-64	72.71	6.10	6.06	14.27	8.21
v 6			100	231.27	n-hexane	72.81	6.12	6.03		8.17
8 h	н	CH ₃	100	C15H17NO	oil	79.26	7.54	6.16		
		5		227.31		79.33	7.58	6.11		
8 i	Н	NO_2	100	C14H14N2O3	oil	65.11	5.46	10.85		
	_	~ .		258.28 C14H13Cl2NO		65.25	5.50	10.80	25.12	
8 j	CI	CI	100	282.17	oil	59.59 59.66	4.64 4.67	4.96 4.96	25.13 25.10	
8k	н	н	100	C15H17NO	70-71	39.00 79.26	4.07 7.54	6.16	25.10	
OR			100	227.31	n-hexane	79.30	7.55	6.12		
81	н	CI	100	C15H16CINO	91-92	68.83	6.16	5.35	13.54	
_				261.75	n-hexane	68.84	6.16	5.34	13.57	
8m	H	F	100	C15H16FNO	90-91	73.45	6.57	5.71		7.74
_				245.30	n-hexane	73.53	6.61	5.67		7.69
8n	н	СН3	86	C ₁₆ H ₁₈ NO 240.33	oil	79.97	7.55	5.83		
80	* *	NO.	100	C15H16N2O3	oil	80.00 66.16	7.57 5.92	5.82 10.29		
00	н	NO ₂	100	272.31	011	66.11	5.89	10.31		
8p	CI	CI	100	C15H15Cl2NO	oil	60.83	5.10	4.73	23.94	
				296.20		60.88	5.11	4.70	23.90	
8q	Н	Н	100	C15H15NO3	116-7	70.02	5.88	5.44		
•		<i>c</i> .	07	257.29	cyclohexane	70.00	5.87	5.45	10.16	
8r	Н	CI	86	C15H14CINO3 291.74	116-7 cyclohexane	61.76 61.79	4.84 4.87	4.80 4.82	12.15 12.09	
8 s	н	F	100	C15H14FNO3	118-20	65.45	4.67 5.13	4.82 5.09	12.09	6.90
03	11		100	275.28	cyclohexane	65.49	5.15	5.00		6.88
8t	н	СН3	100	C16H17NO3	99-101	70.83	6.32	5.16		
		3		271.32	cyclohexane	70.83	6.35	5.14		
8u	Cl	Cl	100	C15H13Cl2NO3		55.24	4.02	4.29	21.74	
				326.18 c	yclohexane/benzen	e 55.31	4.09	4.26	21.71	

was added in one batch to the syrupy complex. After thorough mixing the homogeneous solution was allowed to stand until the azafulvene formation was complete. The mixture was poured into 10% aqueous Na_2CO_3 (25 ml/ml POCl₃) and stirred at room temp. for 2 h. The product was isolated from the 1,2-dichloroethane layer and recrystallized from suitable solvent (Table 1).

Aryl-1-allyl-1H-pyrrol-2-yl ketones and aryl-1-crotyl-1H-pyrrol-2-yl ketones 7g-r

A mixture of the proper 2-acylpyrrole (5.0 mmole), K_2CO_3 (10.0 mmole), 18-crown-6 (0.38 mmole), and the appropriate alkyl bromide (10.0 mmole) in anhydrous acetone (100 ml) was stirred at reflux for 24 h.

Table 3: Chemical and Physical Data of Derivatives 6

After cooling, the mixture was filtered and the solvent was evaporated. The crude residue was chromatographed (alumina/CHCl₃) to give pure 7g-r.

Aryl-1-methoxycarbonylvinyl-1H-pyrrol-2-yl ketones 7s-w

A mixture of the proper 2-acylpyrrole (7.5 mmole), methylpropiolate (7.5 mmole) and tetrabutylammonium fluoride (0.38 mmole) in anhydrous THF (100 ml) was stirred at room temp. for 2 h. The mixture was diluted with H₂O (100 ml) and concentrated. The aqueous residue was extracted with CHCl₃ (3 x 50 ml) and the org. layers were washed with brine (3 x 50 ml), dried and evaporated. Solid substances were recrystallized from suitable solvents and oils were purified by column chromatography (SiO₂/CHCl₃).

Table 3	B: Cho	emical	and Physical Da	ta of	Derivatives 6					
NH NH		R			$\left \begin{array}{c} & & \\ & $	$\left[\right]_{N}$	R1			R ₂ R ₁
	ба-	d		6 e-	Сн ј	13 6 k-p		осн	3 6 q-u	
Compd	L R1	R ₂	Formula (Mol. weight)	Yiek (%)	MP (°C) Solvent	Analysis C	(%):C H	alcd. ound N	CI	F
6a	н	н	C14H12N3	43	125-7	75.31	5.87	18.82		
6b	н	Cl	(233.28)		n -hexane-benzene	75.13	6.00 4.69	18.66	12.76	
00	п	u	C14H12CIN3 (257.72)	50	146-7 n-hexane-benzene	65.25 65.41	4.09	16.30 16.08	13.76 13.75	
6c	н	NO ₂	C14H12N4O2	33	140-2	62.68	4.51	11.93	13.75	
		4	(268.28)	55		62.42	4.43	12.36		
6 d	CI	CI	C14H11Cl2N3	40	164-7	57.55	3.79	14.38	24.27	
6e			(292.17)		pet, ether-diet, ether	57.82	3.93	14.13	24.12	
oe	Н	Н	C17H17N3	100	lio	77.54 77.38	6.51 6.48	15.96 16.14		
6 f	н	CI	(263.35) C17H16CIN3	71	99-100	68.57	5.42	14.11	11.91	
••	••	•••	(297.79)	1	pet. ether- n -hexane	68.00	5.58	14.25	11.17	
6 g -	Н	F	C17H16FN3	60	oil	72.58	5.73	14.94		6.75
			(281.34)			72.41	5.69	15.07		6.83
6 h	н	СH ₃		62	oil	77.95	6.90	15.15		
6 i	н	10	(277.37) C17H16N4O2			77.78	6.85	15.37		
01	п	NO ₂	(308.34)	86	oil	66.22 66.15	5.23 5.19	10.38 10.52		
6 j	CI	CI	C17H15Cl2N3	86	oil	61.46	4.55	12.65	21.34	
•			(332.24)	00	0.1	61.71	4.63	12.67	20.99	
6 k	Н	Н	C18H19N3	100	oil	77. 9 5	6.90	15.15		
~		.	(277.37)			78.30	6.93	14.77		
61	н	CI	C18H18CIN3	84	oil	69.34	5.82	13.48	11.37	
6т	н	F	(311.82) C18H18FN3		oil	69.68 73.20	5.85 6.14	13.41 14.23	11.06	6.43
••••		•	(295.36)	77	0n	73.01	6.03	14.31		6.65
6n	н	CH ₃	C19H21N3	75	oil	78.32	7.26	14.42		
		-	291.40)			78.12	7.19	14.69		
60	н	NOZ	C18H18N4O2	75	oil	67.07	5.63	9.93		
бр	CI	CI	(322.37)		- 11	66.99 62.44	5.61 4.95	10.07 12.14	20.48	
VΡ	CI	CI	C18H17Cl2N3 (346.26)	75	oil	62.50	4.99	11.96	20.48	
6q	н	н	C18H17N3O2	70	oil	70.34	5.58	13.67		
-			(307.36)	••	-	70.55	5.67	13.72		
6r	н	CI	C18H16CIN3O2	50	oil	63.33	4.73	12.32	10.25	
6 s	н	F	(341.09) C18H1/ENaOa	•••	-11	63.41 66.43	4.75 4.96	12.35 12.92	10.21	5 9A
43	п	ſ	C18H16FN3O2 (325.35)	90	oil	66.57	4.90 5.01	12.92		5.84 5.67
бt	н	СН3	C19H19N3O2	86	oil	71.01	5.96	13.07		5.01
		3	(321.38)			70.88	5.82	13.00		
бu	Cl	CI	C18H15Ci2N3O2	90	149-52	57.46	4.02	11.17	18.85	
			(377.25)		diet. ether-benzene	57.59	4.11	11.33	18.81	

	Fungi (n° of tested strain)												
Tested substance		Ca ndida d	ubicans	(40)		Candida spp (12) ^{b)}							
	R%	nX	MIC 50	MIC ₉₀	Range	R%	nX	MIC 50	MIC 90	Range			
68	100	>256				100	>256						
6 b	100	>256				100	>256						
6c	100	>256				100	>256						
6d	9.5	97.53	64	128	32->256	50	152	64	256	64->256			
6e	100	>256				100	>256						
6f	0	52.5	32	64	16-64	16.6	116.3	16	64	16->256			
6 g	26.19	196.95	128	>256	64->256	50	225	64	256	64->256			
6 h	100	>256				100	>256						
6 i	12.5	77.65	32	128	16->256	75	200	256	256	32->256			
6 j	0	5.17	4	8	1-8	0	12.1	8	8	4-32			
6 k	35	219.2	128	>256	64->256	90	371	>256	256	64->256			
61	0	40.95	32	64	4-128	0	28.70	32	64	32-128			
6 m	19.04	123.42	128	256	16->256	50	231	64	256	64->256			
6 n	100	>256				100	>256						
60	12.5	65.2	32	128	8-256	75	184	64	128	32->256			
6p	0	10.35	8	32	1-32	0	16.8	4	16	4-64			
6q	14.2	131.4	64	256	32->256	50	345.6	256	>256	64->256			
6r	52.3	163.04	128	256	32->256	66.6	202.6	256	256	64->250			
6 s	25	169	128	>256	8->256	50	229.1	64	256	64->256			
6 t	20	103.6	32	>256	16->256	75	264	256	>256	32->256			
6u	0	46.8	16	64	16-128	Ó	41.6	16	128	16-128			
Ketoconazole	Ŏ	7.9	2	4	0.25-32	Ó	10.9	8	16	2-32			
Miconazole	õ	2.9	2	4	0.25-16	0	5.9	4	8	1-8			
Bifonazole	ŏ	3.1	ī	4	1-16	Ō	4.5	1	8	0.5-8			

Table 4: Antimycotic Activity of Derivatives 6 at pH 7.2^{a)}

a) The *in vitro* activities are expressed as the minimum inhibitory concentration (MIC) in μg/ml. R%: percentage of resistant strains; MIC₅₀ and MIC₉₀: MIC for 50% and 90% of strain, respectively.
b) Respectively, 3 C. guilliermondii, 3 C. lipolytica, 3 C. krusei, and 3 C. parapsilosis.

	Fungi (n° of tested strain)												
Tested substance		Candida	a albicans	(40)		Candida spp (12) ^{b)}							
	R%	nX	MIC 50	MIC 90	Range	R%	nŽ	MIC 50	MIC 90	Range			
6a	100	>256				100	>256						
7 b	100	>256				100	>256						
7c	100	>256				100	>256						
7d	10.7	114.1	64	128	32->256	50	161	64	256	64->250			
7e	100	>256				100	>256						
7f	0	48.5	32	64	16-128	20	121.4	16	64	16->250			
7 g	31.2	202.1	128	>256	64->256	50	261.5	64	256	64->256			
7 h	100	>256				100	>256						
7 i	14.9	81.2	32	128	16->256	75	213.5	256	256	32->256			
7 j	0	9.3	4	16	2-32	0	15.3	8	16	4-32			
7 k	38	230.2	128	>256	64->256	90	359	256	>256	64->256			
71	0	41.5	32	64	8-128	0	31.3	32	64	16-12			
7 m	21.3	133.4	128	256	16->256	50	287.1	128	256	128->256			
7 n	100	>256				100	>256						
70	15.2	71.1	32	128	16-256	75	190.1	64	128	64->256			
7 p	0	15.8	8	32	4-32	0	17.8	8	16	4-64			
7q	16.1	14.01	64	256	32->256	50	341.3	256	>256	64->25			
7r	50	149.1	128	256	32-256	66.6	231.5	256	256	64->250			
7 s	28.3	181.2	128	256	16->256	50	221.7	64	256	64->256			
7 t	21.9	141.7	32	>256	32->256	75	274	256	>256	32->25			
7 u	0	48.1	16	64	16-128	0	50.1	32	128	6-128			
Ketoconazole	0	4.5	4	16	0.25-16	0	10.9	2	32	2-32			
Miconazole	0	3.9	2	4	0.25-16	0	3.1	1	4	0.25-1			
Bifonazole	0	3.6	2	4	0.5-16	0	6.5	2	8	0.5-8			

 Table 5: Antimycotic Activity of Derivatives 6 at pH 5.8^{a)}

^{a)} The *in vitro* activities are expressed as the minimum inhibitory concentration (MIC) in μ g/ml. R%: percentage of resistant strains; MIC₅₀ and MIC₉₀: MIC for 50% and 90% of strains, respectively.

^{b)} Respectively, 3 C. guilliermondii, 3 C. lipolytica, 3 C. krusei, and 3 C. parapsilosis.

Table 6: ¹H-NMR Data of derivatives 6

Compd	solvent	¹ H-NMR (δ)
ба	CDCl ₃	500 (m 1H H C (mumbh) 615 (m 1H H C (much) 6 (2) (much
••	cocig	5.90 (m, 1H, H-C4 pyrrole), 6.15 (m, 1H, H-C3 pyrrole), 6.63 (s, 1H, =CH-), 6.80-6.93 (m. 2H, pirrole and imidazole), 6.97-7.63(m, 7H, benzene and other imidazole), 10.38 (s, broad 1H, NH).
6 b	CDCl3	5.90 (m, 1H, H-C4 pyrrole), 6.19 (m, 1H, H-C3 pyrrole), 6.47 (s, 1H, =CH-), 6.73-6.97 (m, 2H, pirrole and imidazole), 6.97-7.23 (m, 4H, benzene and other imidazole), 7.37 (d, 2H, other
6 c	DMF-d7	benzene), 10.43 (s, broad, 1H, NH). 5.89 (m, 1H, H-C4 pyrrole), 6.07 (m, 1H, H-C3 pyrrole), 6.91 (m, 1H, H-C5 pirrole), 7.04
		(m, 2H, imidazole), 7.13 (s, 1H, =CH-), 7.36 (d, 2H, benzene), 7.67 (s, 1H, H-C2 imidazole), 8.30 (d, 2H, other benzene), 11.33 (s, broad, 1H, NH).
6d	DMF-d7	5.73 (m, 1H, H-C4 pyrrole), 6.07 (m, 1H, H-C3 pyrrole), 6.77-7.20 (m, 5H, H-C5 pirrole, =CH- and imidazole), 7.37-7.73 (m, 3H, benzene), 11.25 (s, broad 1H)
6 e	CCl4	4.24 (m, 2H, CH ₂ =CH-CH ₂ -), 4.93 (dd, J=16.5 Hz, 1H, CH ₂ =CH-CH ₂ -), 5.15 (dd, J=10.5 Hz, CH ₂ =CH-CH ₂ -), 5.60 (m, 1H, H-C4 pyrrole), 5.66-5.95 (m, 1H, CH ₂ =CH-CH ₂ -), 5.98 (m, 1H, H-C3 pyrrole), 6.43 (s, 1H, =CH-), 6.52 (m, 1H, H-C5 pyrrole), 6.72 (d by call 1H)
61	CC14	imidazole), 6.88-7.42 (m, 7H, other imidazole and benzene). 4.27 (m, 2H, CH ₂ =CH-CH ₂ -), 4.77-5.20 (m, 2H, CH ₂ =CH-CH ₂ -), 5.72 (m, 1H, H, CH ₂ -CH-CH ₂ -), 5.72 (m, 1H, H, CH ₂ -CH-CH ₂ -), 5.72 (m, 1H, H, CH ₂ -CH-CH ₂ -), 5.72 (m, 1H, H, CH ₂ -CH-CH ₂ -), 5.72 (m, 1H, H, CH ₂ -CH-CH ₂ -), 5.72 (m, 1H, H, CH ₂ -CH-CH ₂ -), 5.72 (m, 1H, H, CH ₂ -CH-CH ₂ -), 5.72 (m, 1H, H, CH ₂ -CH-CH ₂ -), 5.72 (m, 1H, H, CH ₂ -CH-CH ₂ -), 5.72 (m, 1H, H, CH ₂ -CH-CH ₂ -), 5.72 (m, 1H, H, CH ₂ -CH-CH ₂ -), 5.72 (m, 1H, H, CH ₂ -CH-CH ₂ -), 5.72 (m, 1H, H, CH ₂ -CH-CH ₂ -), 5.72 (m, 1H, H, CH ₂ -CH-CH ₂ -), 5.72 (m, 1H, H, CH ₂ -CH-CH ₂ -), 5.72 (m, 1H, H, CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -), 5.72 (m, 1H, H, CH ₂ -CH ₂
		pyrrole), 5.76-6.05 (m, 1H, CH ₂ =CH-CH ₂ -), 6.11 (m, 1H, H-C3 pyrrole), 6.47 (s, 1H, =CH-), 6.72 (m, 1H, H-C5 pyrrole), 6.88-7.42 (m, 8H, imidazole and henzene)
6 g	CC14	4.24 (m, 2H, CH ₂ =CH-CH ₂ -), 4.91 (dd, J=16.5 Hz, 1H, CH ₂ =CH-CH ₂ -), 5.16 (dd, J=10.5 Hz, CH ₂ =CH-CH ₂ -), 5.57 (m, 1H, H-C4 pyrrole), 5.65-5.92 (m, 1H, CH ₂ =CH-CH ₂ -), 5.98
		(m, 1H, H-C3 pyrrole), 6.40 (s, 1H, =CH-), 6.62 (m, 1H, H-C5 pyrrole), 6.70 (d, broad, 1H, inidazole), 6.90-7.07 (m, 5H, imidazole and benzene), 7.17 (s, 1H, inidazole).
6 h	CC14	2.33 (s, 3H, CH3-ph), 4.22 (m, 2H, CH2=CH-CH2-), 4.77-5.30 (m, 2H, CH2=CH-CH2-), 5.53-6.07(m, 3H, CH2=CH-CH2-, H-C4 and H-C3 pyrrole), 6.38(s, 1H, =CH-), 6.52-6.76
6 i	CCl4	(m, 2H, H-C5 pyrrole and imidazole), 6.80-7.30 (m, 6H, other imidazole and benzene). 4.32 (m, 2H, CH ₂ =CH-CH ₂ -), 4.92 (dd, J=16.5 Hz, 1H, CH ₂ =CH-CH ₂ -), 5.15 (dd, J=10.5 Hz, 1H, CH ₂ -), 5.15 (dd, J=10.5 Hz, 1H, CH ₂ -), 5.15 (dd, J=
		$H_{2}, CH_{2}=CH_{2}-1, 5.50$ (m, 1H, H-C4 pyrrole), 5.62-5.95 (m, 1H, CH_{2}=CH_{2}-1) 6.01
6 j	CCL	(m, 1H, H-C3 pyrrole), 6.58-6.82 (m, 3H, H-C5 pyrrole and imidazole), 6.97 (s, 1H, =CH-), 7.18 (d, 2H, benzene), 7.42 (s, 1H, H-C2 imidazole), 8.16 (d, 2H, other benzene).
.,	004	4.27 (m, 2H, CH ₂ =CH-CH ₂ -), 5.00 (dd, J=16.5 Hz, 1H, CH ₂ =CH-CH ₂ -), 5.14 (dd, J=10.5 Hz, CH ₂ =CH-CH ₂ -), 5.54 (m, 1H, H-C4 pyrrole), 5.60-5.93 (m, 1H, CH ₂ =CH-CH ₂ -), 6.00
6 1.	0.01	(m, 1H, H-C3 pyrrole), 6.60-6.80 (m, 4H, =CH-, H-C5 pyrrole and imidazole), 6.95 (s, 1H, H-C2 imidazole), 7.15-7.33 (m, 2H, H-C5 H-C6 benzene) 7.43 (d, 1H, benzene).
6 k	CCl4	1.73 (m, 3H, CH ₃ -CH=CH-CH ₂ -), 4.26 (m, 2H, =CH-CH ₂ -), 5.38-5.67 (m, 3H, CH ₃ - CH=CH-CH ₂ - and H-C ₄ pyrrole), 5.97 (m, 1H, H-C ₃ pyrrole), 6.47 (s, 1H, =CH-), 6.62 (m,
		1H, H-C5 pyrrole), 6.73 (d, broad, 1H, imidazole), 6.92-7.63 (m, 7H, other imidazole and benzene).
51	CCl4	1.67 (m, 3H, CH ₃ -CH=CH-CH ₂ -), 4.23 (m, 2H, CH ₂ =CH-CH ₂ -), 5.27-5.73 (m, 3H, CH ₃ - CH=CH-CH ₂ - and H-C4 pyrrole), 5.97 (m, 1H, H-C3 pyrrole), 6.33-7.50 (m, 9H, =CH-, H-
ón	CCl4	C5 pyrrole, imidazole and benzene). 1.60 (m, 3H, CH3-CH=CH2-), 4.24 (m, 2H, $=$ CH-CH2-), 5.32-5.67 (m, 3H, CH2-)
		CH=CH-CH ₂ - and H-C4 pyrrole), 5.87 (m, 1H, H-C3 pyrrole), 6.43 (s, 1H, =CH-), 6.52 (m, 1H, H-C5 pyrrole), 6.68 (d, broad, 1H, imidazole), 6.87-7.08 (m, 5H, imidazole and benzene), 17 (c H imitarole), 6.87 (m, 5H, imidazole and benzene), 17 (c H imitarole), 6.87 (m, 5H, imidazole and benzene), 17 (c H imitarole), 6.87 (m, 5H, imidazole and benzene), 17 (c H imitarole), 6.87 (m, 5H, imidazole and benzene), 17 (c H imitarole), 18 (m, 5H, imidazole and benzene), 17 (c H imitarole), 18 (m, 5H, imidazole and benzene), 18 (m, 5H, imidazole
60	CCL4	1.17 (S, 1r, inidazole).
		1.63 (m, 3H, CH ₃ -CH=CH-CH ₂ -), 2.32 (s, 3H, CH ₃ -ph), 4.13 (m, 2H, =CH-CH ₂ -), 5.07- 5.63 (m, 3H, CH ₃ -CH=CH-CH ₂ - and H-C4 pyrole), 5.92 (m, 1H, H-C3 pyrole), 6.38 (s, 1H) - 6.51 (m, 1H) - 6.51 (m, 2H) - 6.53
6 p	CCl₄	1H, =CH-), 6.57 (m, 1H, H-C5 pyrrole), 6.67 (s, broad, 1H, imidazole), 6.77-7.10 (m, 6H, other imidazole and benzene). 1.64 (m, 3H, CH, CH=CH, CH, CH, A, 22 (m, 2H, CH, CH, CH, CH, CH, CH, CH, CH, CH, C
	00.4	1.64 (m, 3H, CH ₃ -CH=CH-CH ₂ -), 4.33 (m, 2H, =CH-CH ₂ -), 5.32-5.67 (m, 3H, CH ₃ -CH=CH-CH ₂ - and H-C4 pyrrole), 5.97 (m, 1H, H-C3 pyrrole), 6.60-6.83 (m, 3H, H-C5
6q	0014	pyrrole and imidazote), 6.97 (s, 1H, =CH-), 7.05-7.40 (m, 3H, H-C ₂ imidazole and benzene), 8.14 (d, 2H, other benzene).
94	CCi4	1.55 (m, 3H, CH ₃ -CH=CH-CH ₂ -), 4.27 (m, 2H, =CH-CH ₂ -), 5.33-5.60 (m, 3H, CH ₃ -CH=CH-CH ₂ and H-C4 pyrrole), 5.97 (m, 1H, H-C ₃ pyrrole), 6.57-6.80 (m, 4H, =CH-, H-CH ₂ -), 4.27 (m, 2H, 2H), 4.27 (m, 2H),
		C5 pyrrole and imidazole), 6.95 (s, 1H, H-C2 imidazole), 7.18 (d, broad, 1H, H-C5 benzene), 7.23 (dd, 1H, H-C6 benzene), 7.45 (d, 1H, H-C3 benzene).
Sr	CDC13	3.70 (s, 3H, CH ₃ -OCO), 5.81 (m, 1H, H-C4 pyrrole), 5.87 (d, J=15 Hz, 1H, CO-CH=CH-N), 6.27 (m, 1H, H-C ₃ pyrrole), 6.67 (s, 1H, =CH-), 6.86 (d, broad, 1H, imidazole), 6.94.7 53
i s	CCI4	(m, 8H, H-C5 pyrrole, imidazole and benzene), 7.74 (d, H, CO-CH=CH-N), 3.58 (s, 3H, CH3-OCO), 5.72 (m, 1H, H-C4 pyrrole), 5.78 (d, J=15 Hz, 1H, CO-CH=CH-N),
		6.17 (m, 1H, H-C3 pyrrole), 6.67-7.50 (m, 9H, =CH-, H-C5 pyrrole, imidazole and benzene), 7.68 (d, J=15 Hz, 1H, CO-CH=CH-N).
it	CDCl3	3.58 (s, 3H, CH3-OCO), 5.69 (m, 1H, H-C4 pyrrole), 5.75 (d, J=15 Hz, 1H, CO-CH=CH-N), 6.17 (m, 1H, H-C3 pyrrole), 6.67-7.23 (m, 9H, =CH-, H-C5 pyrrole, imidazole and benzene),
u	CCI4	7.52 (s, 1H, H-C2 imidazole), 7.68 (d, J=15 Hz, 1H, CO-CH=CH-N)
-		2.35 (s, 3H, CH3-ph), 3.62 (s, 3H, CH3-OCO), 5.72 (m, 1H, H-C4 pyrrole), 5.77 (d, J=15 Hz, 1H, CO-CH=CH-N), 6.16 (m, 1H, H-C3 pyrrole), 6.67-7.40 (m, 9H, =CH-, H-C5 pyrrole), imidatale and benareas) 7.66 (d, J=15 Hz, 1H, OC) CH (M)
w	CDCi ₃	pyrrole, imidazole and benzene), 7.66 (d, J=15 Hz, 1H, CO-CH=CH-N). 3.72 (s, 3H, CH3-OCO), 5.11 (d, J=15 Hz, 1H, CO-CH=CH-N), 6.17-7.83 (m, 10H, =CH-,

Carbinols 8a-u

A mixture of the appropriate ketone 7 (5.0 mmole) and NaBH₄ (10.0 mmole) in methanol (50 ml) was stirred at room temp. for 2 h. The mixture was diluted with H₂O (50 ml) and concentrated. Extraction with CHCl₃ (3 x 50 ml) and evaporation of the solvent from the dried solution furnished a residue which was recrystallized from suitable solvent or chromatographed (SiO₂/CHCl₃).

Imidazoles 6a-u

A mixture of the appropriate carbinol **8** and 1,1-carbonyldiimidazole (10% excess) in anhydrous acetonitrile was stirred at room temp. for 2 h. The mixture was diluted with H_2O and concentrated. Extraction with ethyl acetate and evaporation of the solvent furnished a residue which was chromatographed (alumina/CHCl₃) to give pure **6**.

References

- Part I: S. Massa, R. Di Santo, A. Retico, A. Artico, N. Simonetti, G. Fabrizi, D. Lamba, *Eur. J. Med. Chem.* 1992, 27, 495-502.
- 2 A. Stütz, G. Petranyi, J. Med. Chem. 1984, 27, 1539-1543.

- 3 M.B. Gravestock, J.F. Ryley, Ann. Rep. Med. Chem. 1984, 19, 127-136.
- 4 Y. Koltin, Ann. Rep. Med. Chem. 1989, 25, 141-148.
- 5 S. Massa, G. Stefancich, F. Corelli, R. Silvestri, A. Mai, M. Artico, S. Panico, N. Simonetti, *Arch. Pharm. (Weinheim)* **1989**, *322*, 369-373.
- 6 S. Massa, G. Stefancich, F. Corelli, R. Silvestri, M. Artico, S. Panico, N. Simonetti, *Il Farmaco, Ed. Sci.* 1988, 43, 693-704.
- 7 G. Stefancich, R. Silvestri, S. Panico, M. Artico, N. Simonetti, Arch. Pharm. (Weinheim) **1990**, 323, 273-280.
- 8 S. Massa, R. Di Santo, M. Artico, R. Costi, G. Apuzzo, G. Simonetti, M. Artico, *Med. Chem. Res.* 1992, 2, 148-153.
- 9 G. Stefancich, R. Silvestri, A. Retico, M. Artico, G. Simonetti, Arch. Pharm. (Weinheim) 1992, 325, 199-204.
- 10 S. Massa, R. Di Santo, A. Mai, M. Botta, M. Artico, S. Panico, G. Simonetti, *Il Farmaco* 1990, 45, 833-846.
- 11 S. Massa, R. Di Santo, M. Artico, R. Costi, C. Di Filippo, G. Simonetti, A. Retico, M. Artico, Eur. Bull. Drug Res. 1992, 1, 12-17.
- 12 G.G. Kleinspehn, A.E. Briod, J. Org. Chem. 1961, 26, 1652-1654.
- 13 J. White, G. McGillivray, J. Org. Chem. 1977, 42, 4248-4251.

[Ph89]