CHEMISTRY OF HETEROANALOGS OF ISOFLAVONES 13*. 1,3-BENZODIOXAN ANALOGS OF FLAVONOIDS

V. P. Khilya, Kh. Al'. Budi, A. Aitmambetov, L. G. Grishko, A. V. Turov, D. M. Zakharik, and D. Litken

Some 1,3-benzodioxan analogs of chalcones and their epoxides have been obtained, and used to prepare pyrazolines and novel flavone and flavanone analogs of flavolignan (sylibin). The PMR spectra of novel compounds are shown and discussed, together with the results of preliminary biological tests.

Interest in benzodioxan analogs of flavonoids has arisen for the reason that they are related to sylibin, a naturally occurring flavolignan with high biological activity, which possess a benzodioxan moiety in its structure.

In a study of the effects of structural modifications of sylibin on its biological and chemical properties, we have obtained some 1,4-benzodioxan [1-3] and 1,5-benzodioxepan [4] analogs of flavonoids. Some of these showed hypolipidemic, hepatoprotectant, and other types of activity.

We here report the synthesis of some novel flavonoids incorporating the 1,3-benzodioxan nucleus. The starting materials for the preparation of novel flavonoids isomeric with sylibine in respect of the benzodioxan fragment of the molecule were chalcones (I-XVI). These were readily obtained by basic condensation of substituted 2-hydroxy- and 2-benzyloxy-acetophenones with 6-halo-1,3-benzodioxanaldehydes. Treatment of chalcones (XIII-XVI) with hydrogen peroxide in alkaline solution gave epoxides (XVII-XX).

These benzodioxan analogs of chalcones (I, III, VIII, X) were converted into the corresponding flavanone analogs (XXI-XXIV) by isomerization on Amberlyst A-21 ion-exchange resin [1].

Oxidation of the propenone (X) with hydrogen peroxide as described in [5] gave the 3-hydroxychromone (XXV). Oxidation of chalcones (I-IV) and (VI-XII) with selenium dioxide in pentanol as described in [6], or with dimethyl sulfoxide in the presence of catalytic amounts of iodine [7], gave satisfactory to good yields of the benzodioxane derivatives of chromones (XXVI-XXXVI). The cyclization times using the latter method were much shorter, and the yields of chromones higher, than when selenium dioxide was used. Several chromones, on treatment with phosphorus pentasulfide in pyridine, were converted into the thioxochromones (XXXVI-XLI).

The structures of (I-XLI) were established by PMR (Tables 1 and 2). The PMR spectra of chalcones (I-XVI) showed signals for the olefinic protons with chemical shifts in the range 7.0-8.0 ppm. The coupling constants ($J_{\alpha,\beta}$ 15.8-16.1 Hz) indicate the transoid configuration in all the chalcones prepared. The hydrogen atoms of the hydroxyl groups in (I-XII), which are involved in the formation of intramolecular hydrogen bonds (IMHB), absorb at 12.5-13.4 ppm.

^{*}For Communication 12, see [1].

T. V. Shevchenko Kiev State University, Kiev 252017. L. Koshut Debretsen University, Hungarian Republic, Debretsen H-4010. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 879-887, July, 1992. Original article submitted July 6, 1990.

I, XV, XIX, XXI, XXVI R¹=H, R²=Cl; II, XVI, XX, XXVII R¹=H, R²=Br; III R¹=4-Me, R²=Cl; IV R¹=4-Me, R²=Br; VII R¹=4-Me, R²=Cl; VI R¹=4-OMe, R²=Br; VIII R¹=5-F, R²=Cl; XI R¹=5-F, R²=Br; X, XIV, XVIII R¹=5-Cl, R²=Cl; XI, XVII R¹=5-Cl, R²=Br; XII R¹=5-Me, R²=Cl; XXII, XXVII R¹=5-Cl, R²=Cl; XXII, XXVII R¹=5-Me, R²=Cl; XXII, XXVII R¹=7-Me, R²=Cl; XXII, XXXII, XXXII, R¹=7-OMe, R²=Cl; XXII, XXVII R¹=7-OMe, R²=Cl; XXII R¹=7-OMe, R²=Cl; XXII R¹=7-OMe, R²=Br; XXXV R¹=6-Cl, R²=Br; XXXV R¹=6-Cl, R²=Br; XXVI, XLI R¹=7-OMe, R²=Cl; XLII R=Ph, R¹=H, R²=Cl; XLIII R=H, R¹=4-Me, R²=Cl; XLIV R=Ph, R¹=4-Me, R²=Cl; XLV R=H, R¹=5-F, R²=Br; XLIX R=H, R¹=5-Cl, R²=Cl; LIV R=H, R¹=5-Cl, R²=Cl; XLII R=H, R¹=5-Cl, R²=Cl; XL

In the PMR spectra of epoxides (XVII-XX), the most characteristic signals are those for the methine protons of the oxirane ring, which appear as doublets with small J values (1.76-1.83 Hz, Table 2). Assignment of the signals for the oxirane protons was carried out as in [3].

Compound	Empirical formula	mp,°C	Yield, %				
I	C17H13ClO4	149150	68				
II	C17H13BrO4	152153	79				
III	C18H15ClO4	175176	67				
IV	C18H15BrO4	178179	50				
v	C19H17ClO4	220	80				
VI	C18H15ClO5	184185	64				
VII	C ₁₈ H ₁₅ BrO ₅	181182	71				
VIII	C ₁₇ H ₁₂ ClFO ₄	223224	90				
IX	C17H12BrFO4	210211	57				
х	C17H12Cl2O4	193194	97				
XI	C ₁₇ H ₁₂ BrCiO ₄	194195	52				
XII	C18H15ClO4	207208	67				
XIII	C ₂₄ H ₁₈ BrClO ₄	143144	62				
XIV	C24H18Cl2O4	158159	70				
xv	C24H19CIO4	116117	82				
XVI	C24H19BrO4	9697	74				
XVII	C24H18BrClO5	195196	78				
XVIII	C24H18Cl2O5	195196	69				
XIX	C24H19ClO5	143144	92				
XX	C24H19BrO5	139140	71				
XXI	C17H13ClO4	163 164	78				
XXII	C18H15ClO4	167 168	71				
XXIII	C12H12CIFO4	162 163	78				
XXIV	C12H12Cl2O4	193 194	68				
XXV	C17H10ChOs	242 243	53				
XXVI	C17H11ClO4	205 206	62				
YYVII	CizHuBrOd	216 217	36				
XXVIII	CustusClO	210217	90				
	CisHisPrO.	230	90 56				
	CisHisBl04	213210	JU 01				
ллл VVVI	CisHusPrOs	211212	91				
	CISH13BIOS	220221	33				
XXXII	C17H10CIFO4	225220	90				
XXXIII	CI7H10BFF04	209210	40				
XXXIV	C17H10Cl2O4	223224	19				
AAAY VVVVI	C ₁ /H ₁₀ BFCIO ₄	194 195	40				
AAAVI		104103	90				
XXXVII		103104	78				
XXXVIII	C18H13ClO4S	139160	79				
XXXIX	C17H10CIFO3S	235236	73				
XL	$C_{17}H_{10}C_{12}O_{3}S$	224225	70				
XLI	C ₁₈ H ₁₃ ClO ₃ S	162163	66				
XLII	C23H19ClN2O3	159161	45				
XLIII	C18H17ClN2O3	114115	97				
XLIV	C24H21CIN2O3	190192	38				
XLV	C18H17CIN2O4	124125	79				
XLVI	C18H17BrN2O4	140142	92				
XLVII	C17H14ClFN2O3	164165	73				
XLVIII	C ₁₇ H ₁₄ BrFN ₂ O ₃	167168	89				
XLIX	C17H14Cl2N2O3	159160	88				
L	C23H18Cl2N2O3	173175	31				

TABLE 1. Physicochemical Constants of Chalcones, Flavanones, Flavones,Thioxoflavanones, and Pyrazolines

TABLE 2. PMR Spectra of Chalcones and Their Derivatives (I-XX)

Chemical shift, 0, ppm (J values, Hz) ³⁶	—си ₌сн_, _сң_сн_	0	8,03, 7,72 (15,78)	8,03, 7,71 (15,78)	8,02, 7,68 (15,78)	8,00, 7,67 (15,80)	8,04, 7,68 (15,81)	8,01, 7,66 (15,80)	8,00, 7,64 (15,81)	8,08, 7,66 (15,81)	8,04, 7,63 (16,10)	8,04, 7,63 (15,80)	8,05, 7,63 (15,81)	8,04, 7,67 (15,60)	7,78, 7,43 (15,76)	7,75, 7,43 (16,13)	7,80, 7,48 (15,80)	7,79, 7,48 (15,80)	4,30, 4,24 (1,83)	4,31, 4,24 (1,76)	4,35, 4,26 (1,83)	4,35, 4,25 (1,83)
	SUC	H-9	7,91 (dd, 7,89; 2,0)	7,90 (dd, 7,89; 2,0)	7.77 (d, 7,89)	7,77 (d, 8,0)	7,60 s	7,81 (d, 9,66)	7,80 (d, 9,66)	7,86 (d, 2,5)	7,61 (d, 2,5)	7,84 (d, 2,2)	7,84 (d, 2,2)	7,66 (d, 2,0)	7,64 (d, 2,57)	7,66 (d, 2,57)	7,66 (dd, 2,57; 8,0)	7,68 (dd, 8,06; 1,8)	7,81 (d, 2,57)	7,80 (d, 2,63)	7,84 (dd, 7,5; 2,0)	7,84 (dd, 8,06; 2,2)
		5-R ¹ (5-H)	7,02 (td, 7,89; 2,0)	7,00 (tđ, 7,89; 2,0)	6,75 (dd, 7,89; 1,5)	6,76 (dd, 8,00; 2,0)	2,28 s	6,50 (dd, 9,66; 2,2)	6,49 (dd, 9,66; 2,63)	1	1	1		2,36 s		1	7,07,4 m	7,07,5 m		1	7,07,6 m	7,67,6 m
	phenolic pro	4-R ¹ (4-H)	7,50 (td, 7,89, 2,0)	7,51 (td, 7,89; 2,0)	2,37 c	2,36 s	2,28 s	3,86 s	3,86 s	7,46 (dd, 8,0; 2,5)	7,56 (dd, 8,5; 2,5)	7,45 (dd, 9.66; 2,2)	7,44 (dd, 9,22; 2,2)	7,32 (dd, 8,3; 2,0)	7,39 (dd, 8,8; 2,57)	7,40 (dd, 8,8; 2,57)	7,07,4 m	7,07,5 m	7,43 (dd, 9,16; 2,57)	7,42 (dd, 9,0; 2,63)	7,07,6 m	7,17,6 m
		3-H	6,91 (dd, 7.89; 2,0)	6,92 (dd, 7,89; 2,0)	6,82, (d, 1,5)	6,81, (d, 2,0)	6,82 s	6,48 (d, 2.2)	6,45 (d, 2,2)	7,01 (d, 8,0)	7,11 (d, 8,5)	7,01 (d, 9,66)	6,98 (d, 9,22)	6,94 (d, 8,3)	6,99 (d, 8,8)	7,00 (d, 8,8)	7,07,4 m	7,07,5 m	6,97 (d, 9,16)	6,96 (d, 9,0)	7,07,6 m	7,17,6 m
		2-OH, S (2-CH ₂ R)	12,77	12,77	12,83	12,83	12,64	13,39	13,39	12,49	12,48	12,67	12,67	12,60	5,14; 7,35	5,13; 7,33	5,17; 7,31	5,16; 7,32	5,05; 7,23	5,05; 7,22	5,07; 7,22	5,07; 7,22
	Com- pound		-	Ξ	Ш	IV	>	١٨	III	VIII	XI	X	ХI	ШX	XIII	XIV	Х٧	IVX	IIVX	ТИХ	XIX	xx

*The protons of the 1,3-benzodioxan fragment resonate at 5.3-5.4 (I-XII) or 5.1-5.2 (XIII-XX) (s, 2-CH₂), 4.79-4.93 (s, 4-CH₂), 6.8-7.2 (d, 2,5,5-H, 7.5-7.6 (I-XII) or 6.9-7.3 (XIII-XX) (d, 2,5,7H) ppm.

Com-	Cl	Chemical shift, δ ppm (coupling constant, Hz)*											
pound	2a-H, d.d or 3-H, s	5-11. d	6-R ¹ (6-11)	7-R ¹ (7-H)	8-H, đ								
XXI	5,73 (11,0; 4.8)	7,93 (d.d. 7, 7; 1,8)	7,05 m	7,52 (d.d. 7.7: 1.8)	7,05 m								
XXII	5,70 (11,0; 4,5)	7,82 (8,0)	6,9 (d.d.8,0; 2,0)	2,38 s	6,9 (2,0)								
XXIII	5,69 (11,8; 4,8)	7,58 (2,5)	_	7.2 m	7,2 m								
XXIV	5,71 (11,5; 4,5)	7.89 (2,0)	_	7,44 (d.d 8,0; 2,0)	7,03 (8,0)								
XXVI	7,16	\$,23 (d.d 8,0 2,0)	7,37,7 m	7,37,7 m	7,37,7 m								
XXVII	7,15	8,22 (d.d. 7,5; 2,0)	7,37,8 m	7,37,8 m	7,37,8 m								
XXVIII	7,13	8.10 (8,06)	7,23 (d.d. 8,06; 2,0)	2,51 s	7,36 (d 2,0)								
XXIX	7,12	8,10 (8,0)	7,23 (d.d. 8,0; 2,0)	2,51 s	7,36 (d,2,0)								
XXX	7,11	8,12 (9,16)	7,00 (d.d9,16; 2,2)	3,94 s	6,95 (2,2)								
XXXI	7,10	8,14 (9.5)	6,99 (d.d 9,5; 2,0)	3,95 s	6,95 (2,0)								
XXXII	7,15	7,85 (d,d 8,0; 2,5)		7,53 m	7,53 m								
XXXIII	7,14	7,85 (d,d 8,0; 2,5)	—	7,52 m	7,52 m								
XXXIV	7,17	8,18 (2,57)	—	7,66 (d.d,8,8; 2,57)	7,51 (8,8)								
XXXV	7,16	8,18 (2,2)	_	7,66 d.d. 8.5; 2,2)	7,51 (8,5)								
XXXVI	7,15	8.00 (2,0)	2,47 s	7,51 (d.d, 8,8; 2,0)	7,40 (8,8)								
XXXVII	8,06	8,46 (8,0)	7,25 (d.d. 8,0; 2,2)	2,5 s	7,37 (2,2)								
XXXVIII	7,99	8,48 (8,0)	7,0 (d.d.8,0; 2,0)	3,95 s	6,93 (2,0)								
XXXIX	8,09	8.22 (2,9)	· —	7,41 (d.d 9,3; 2,9)	7,58 (9,3)								
XL	8.08	8.52 (2,5)	_	7,66 (d.d 8,5; 2,5)	7,50 (8,5)								
XLI	8,12	8,35 (2,0)	2,48 s	7,55 (d.d 8,0; 2,0)	7,40 (8,0)								

TABLE 3. PMR Spectra of Benzodioxan Analogs of Flavanones, Flavones, and 4-Thioxoflavones (XXI-XXIV, XXVI-XLI)

^{*}The chemical shifts of the protons at 3-C in chromanones (XXI-XXIV) were: 2.80 (d.d, 11.0-12.0, 16.0-17.0, 3a-H), (d.d 4.5, 16.0-17.0, 3c-H) ppm. The chemical shifts for the protons of the 1,3-benzodioxan fragment were: 5.25-5.38 (s, 2-CH₂), 4.85-4.95 (s, 4-CH₂), 6.97-7.24 (d, 2,5,5-H), 7.5 (for XXI-XXIV) or 7.8-7.9 (for XXVI-XLI) (d, 2.5,7-H) ppm.

The PMR spectra of the flavanones (XXI-XXIV) showed characteristic signals at 5.70 and 2.8-3.0 ppm (Table 3). The coupling constants ($J_{2a,3a}$ =11.0-1.8; $J_{2a,3e}$ =4.5-4.8; $J_{3a,3e}$ =16.0-16.9 Hz) show that the 2-H_a proton is oriented axially, while the benzodioxan residue bonded to this same carbon is oriented equatorially, so that the conformation of the pyranone ring is semi-chair.

The PMR spectra of the chromones and thioxochromones (XXVI-XLI) show signals for the chromone and benzodioxan rings. The most characteristic signals are those for 3-H and 5-H of the benzene ring. Comparing the chromones with thioxochromones, the sulfur atom in the latter gives rise to a low-field shift of the 3-H and 5-H protons of 0.8-1.0 ppm and 0.3-0.4 ppm respectively.

Chemical shift, § ppm (coupling constant,'J, Hz)*		N-H OT N-G ₆ H ₅	6,87,4 m	7,67 S	6,77,3 m	7,55 (d,3,42)	7,56 G, 3,66)	7,89 s	7,04 m	7,89 (d.2,93)	6,77,4 m		
		5-NC, L.đ	5,50 (d.d, ^{12,46;} 6,96)	4,85 (10,25)	5,54 (d.d.12,10; 6,60)	4,89 (10,25; 3,42)	4,90 (10,50; 3,66)	4,98 (11,23)	4,94 (10,25)	4,98 (2,93; 10,74)	5,48 (d.d,12,60; 6,60)		
	e ring protons	4-1th3. đđ	3.24 (17,6; 6,96)	2,90 (10,25; 17,09)	3.27 (18,00; 6,60)	2,89 (10,25; 17,09)	2,87 (10,50; 17,33)	2,96 (11,23; 17,09)	2,94 (10,25; 17,09)	2,98 (10,74; 17,58)	3,27 (17,60; 6,60)		
	pyrazolin	4-IIA. đđ	4,03 (12,46; 17,60)	3,59 (10,25; 17,09)	4,03 (12,10; 18,00)	3,57 (10,25; 17,09)	3,58 (10,50; 17,33)	3,60 (11,23; 17,09)	3,61 (10,25; 17,09)	3,62 (10,74; 17,58)	4,02 (12,10; 17,60)		
		0-11, đ	6,87,4 m	7,15 (8,3)	7,52 (2,5)	7,21 (8,5)	7,20 (8,8)	7,06 m	7,04 m	7,34 (2,5)	6,77,4 m		
		х-х Х-х	6,87,4 m	6,69 (d.d.d 2,0; 8,3)	6,77,3 m	6,45 (d.d 2,0; 8,5)	6,45 (d.d 2,5; 8,8)	ł	ł	3 3	6,77,4 m		
	phenolic protons	phenolic protons	olic protons	×+	6,87,4 m	2,26 S	6,77,3 m	3,75 s	3,75 S	7,06 m	7,04 m	7.22 (d.d, 8,3; 2,5)	2,28
			3-11. d	6,87,4 m	6,73 (2,0)	6,77,3 m	6,50 (2,0)	6,50 (2,5)	7,06 m	7,04 m	6,92 (8,3)	6,77,4 m	
		2-011, S	10,35	11,03	10,51	11,29	11,28	10,89	10,88	11,14	10,43		
	Com- pound		ILLIX	HLLX	λγιχ	XLV	IVLVI.	XLVII	XLVIII	XLIX			

*The protons of the 1,3-benzodioxan fragment resonate at 5.3-5.4 (s, 2-Ch₂), 4.9 (s, 4-CH₂), 6.9-7.3 (d, 2,5,5-H), and 7.1-7.4 ppm (d, 2,5,7-H).

TABLE 4. PMR Spectra of Pyrazolines (XLII-L)

The benzodioxan analogs of chalcones (III, VI-X) react with hydrazine hydrate in alcoholic solution. After a short time, the pyrazoline ring is formed, and the structures of the products (XLIII, XLV-XLIX) were confirmed by elemental analysis and their PMR spectra. They were obtained as colorless, crystalline solids which were readily soluble in 5% sodium hydroxide solution, and gave a blue-green complex with alcoholic ferric chloride. In the PMR spectra of (XLIII, XLV-XLIX), obtained in DMSO, the signal for the 2-OH proton was seen at low field (10.9-11.3 ppm), since the hydroxyl group is involved in IMHB with the nitrogen of the pyrazoline ring. The NH proton in this ring absorbs at 7.5-7.9 ppm.

In the spectra of the 1-phenylpyrazolines (XLII, XLIV, L), the signal for the hydroxyl proton is seen at 10.4-10.5 ppm. The high-field shift of this proton by 0.4-0.7 ppm as compared with the pyrazolines (XLIII, XLV-XLIX), which do not carry a phenyl substituent at nitrogen, indicates the strength of the IMHB between the hydroxyl group and the pyrazoline nitrogen is reduced. The signals for the aromatic protons give rise to a complex system of peaks at 6.4-7.4 ppm. Using special methods, it was possible to identify a doublet for the protons of the benzodioxan fragment. Thus, by double resonance at the frequency of the signal for the 4-CH₂ group of the 1,3-dioxan, the signal for 5-H of the 1,3-benzodioxan, which interacts with the 4-CH₂ group with a small coupling constant, narrowed considerably, thereby enabling the position of this signal in the spectrum to be established. In a homonuclear Oberhauser effect (NOE) experiment, irradiation at the frequency of the 5-H_C signal of the pyrazoline ring resulted in a marked increase (by 10-20%) in the intensity of the signal for 7-H of the benzodioxane ring. This result confirmed the assignment of this signal.

The peaks for the pyrazoline ring protons were seen as an ABC system, identification of the 5-H_C signal being well established. It absorbs at 5.48-5.54 ppm. To assign the signals for H_A and H_B at 4-C of the pyrazoline ring, the NOE method was used. In a $\{5\text{-H}_C\}$ experiment, it was found that in all the compounds there was an increase in the intensity of the signal near 4.03 ppm by 5-7%. This shows that this proton is spatially adjacent to the 5-H_C proton, i.e., these protons have a cisoid orientation. It follows that in the pyrazolines (XLII, XLIV, L) the coupling constants between the 5-H_C proton and the adjacent 4-H_A proton having the cis-orientation are 12.1-12.5 Hz, and between 5-H_C and the trans-4-H_B proton, 6.6-7.0 Hz.

In pyrazolines (XLIII, XLV-XLIX), which do not have an N-phenyl substituent, the 4-H_A (CS 3.6 ppm) in a $\{5-H_C\}$ experiment also showed a significant NOE ($\eta = 7-10\%$), showing that the 4-H_A proton, which has the cisoid orientation relative to 5-H_C, absorbs at lower field as in the N-phenylpyrazole derivatives (XLII, XLIV, L). This finding is of particular significance here, since the coupling constants ${}^{3}J_{5-H_{C},4-H_{A}(cis)}$ and ${}^{3}J_{5-H_{C},4-H_{B}(trans)}$ for pyrazolines (XLIII, XLV-XLIX) are nearly identical.

Preliminary results of biological testing have shown that some of the chalcones, flavones, and flavanones possess high antiflammatory and hepatoprotectant activity.

EXPERIMENTAL

The purities of the compounds obtained were checked by TLC on Silufol UV-254 plates in a mixture of benzene and ethanol (9:1). The PMR spectra of (I-XX) were obtained on a Bruker CXP-200 spectrometer in deuterochloroform, and those of (XXI-XLI) (in deuterochloroform) and (XLII-L) (in dimethyl sulfoxide) relative to TMS as internal standard, on a Bruker WP-100 SY instrument.

The elemental analyses for (I-L) for C, H, N, Cl, and Br were in agreement with the calculated values.

Chalcones (I-XVI) and thioxochromones (XXXVII-XLI) were obtained as yellow, orange, or red crystalline solids which were readily soluble in organic solvents. In contrast to the starting chalcones, the epoxides (XVII-XX), flavanones (XXI-XXIV), and flavones (XXII-XXVI) were colorless crystalline solids.

1-(2-Hydroxyphenyl)-3-(1,3-benzodioxan-8-yl)prop-1-enones (I-XII) and 1-(2-Benzyloxyphenyl)-3-(1,3-benzodioxan-8-yl)prop-1-enones (XIII-XVI). To a hot solution of 20 mmole of 2-hydroxy- or 2-benzyloxyacetophenone in alcohol was added 20 mmole of the appropriate 8-formyl-1,3-benzodioxan and 6 ml of 50% sodium hydroxide solution. The mixture was kept at ambient temperature for 20-40 h, then the solid was suspended in water and acidified with acetic acid until neutral, then filtered off and crystallized from alcohol (I-XII) or ethyl acetate (XIII-XVI).

1-(2-Benzyloxyphenyl)-3-(1,3-benzodioxan-8-yl)-2,3-epoxypropanones (XVII-XX). To a hot solution of 5 mmole of (XIII-XVI) in 50-60 ml of a mixture of acetone and methanol (15:4) was added 10 ml of 30% hydrogen peroxide solution and 5 ml of 2 N sodium hydroxide solution. When the mixture had become completely colorless, it was diluted with water, and the solid filtered off and crystallized from alcohol.

2-(6-Chloro-1,3-benzodioxan-8-yl)chromanones (XXI-XXIV). A suspension of 10 mmole of (I), (III), (VIII), or (X) and 3.5 g of Amberlyst A-21 in 60 ml of methanol was boiled with stirring for 30-60 h. The resin was then filtered off, and the solvent evaporated until crystallization of the chromanone began. The product was recrystallized from methanol.

2-(6-Chloro-1,3-benzodioxan-8-yl)-3-hydroxy-6-chlorochromone (XXV). To a hot mixture of 0.35 g (1 mmole) of (X) and 10 ml of solvent (methanol-acetone, 15:4) was added 7.5 ml of 4 N sodium hydroxide and 1 ml of 30% hydrogen peroxide. The mixture was kept at ambient temperature for 48 h, diluted with twice its volume of water, and neutralized with dilute hydrochloric acid to pH 7. The solid which separated was filtered off, and recrystallized from ethyl acetate. PMR spectrum (DMSO): chromone ring protons: 9.45 (1H, s, 3-OH), 8.07 (1H, d, J 2 Hz, 5-H), 7.83 (1H, d.d, J 2 Hz; 8 Hz, 7-H), 7.72 (1H, d, J 8 Hz, 8-H) ppm; benzodioxan protons: 5.29 (2H, s, 2-CH₂), 4.96 (2H, s, 4-CH₂), 7.39 (1H, d, J 2.2 Hz, 5-H), 7.51 (1H, d, J 2.2 Hz, 7-H) ppm.

2-(1,3-Benzodioxan-8-yl)chromones (XXVI-XXXVI). To a solution of 0.01 mole of (I-IV) or (VI-XII) in 30 ml of dimethyl sulfoxide was added a catalytic amount of iodine, and the solution boiled for 15-30 min. It was then diluted with twice its volume of water, and the solid which separated was filtered off and washed free of traces of iodine on the filter with 20% sodium thiosulfate, then recrystallized from ethyl acetate.

2-(6-Chloro-1,3-benzodioxan-8-yl)thioxochromones (XXXVII-XLI). A finely ground mixture of 5 mmole of the chromone (XXVIII, XXX, XXXII, XXXIV, or XXXVI) and 0.33 mole of phosphorus pentasulfide was dissolved in 5 ml of dry pyridine, and the mixture boiled for 1-2 h at 110-115°C. It was then cooled to ambient temperature, and diluted with 2-3 ml of acetone, then with water until a precipitate formed. The product was filtered off and recrystallized from ethyl acetate.

3-(2-Hydroxyphenyl)-5-(1,3-benzodioxan-8-yl)-2-pyrazolines (XLIII, XLV-XLIX). To a hot solution of 10 mmole of the chalcone (III or VI-X) in 100 ml of alcohol was added 1 ml of 80% hydrazine hydrate, and the mixture boiled for 20 min. It was then diluted with 100-150 ml of water, and the solid which separated was filtered off and recrystallized from alcohol.

1-Phenyl-3-(2-hydroxyphenyl)-5-(6-chloro-1,3-benzodioxan-8-yl)-2-pyrazolines (XLII, XLIV, L). A mixture of 10 mmole of the chalcone (I, III, or X) and 1.7 ml (16 mmole) of phenylhydrazine in 100 ml of alcohol was boiled for 15-20 h. It was then poured into 100 ml of water, and the product filtered off and crystallized from alcohol.

REFERENCES

- 1. V. P. Khilya, D. Litkei, T. Patonai, L. G. Grishko, A. M. Kornilov, and A. Aitmambetov, Khim. Geterotsikl. Soedin., No. 3, 319 (1989).
- 2. G. Litkei, T. Patonai (Patonay), R. Bognar, V. Khilya, A. Aitmambetov, A. Turov, and F. Babichev, Pharmazie, 39, 741 (1984).
- 3. V. P. Khilya, A. Aitmambetov, A. V. Turov, A. M. Kornilov, D. Litkei, and T. Patonai, Khim. Geterotsikl. Soedin., No. 2, 192 (1986).
- 4. T. Patonai (Patonay), G. Litkei, E. Peli, V. P. Khilya, and A. Aitmambetov, Pharmazie, 42, 662 (1987).
- 5. L. G. Grishko, V. V. Grabovskaya, L. A. Marchuk, and V. P. Khailya, Dokl. Akad. Nauk UkrSSR, Ser. B, No. 5, 428 (1978).
- 6. H. C. Mahal, H. S. Rai, and K. Venkatamaran, J. Chem. Soc., 866 (1935).
- 7. A. G. Doshi, P. A. Soni, and B. J. Chiya, Indian J. Chem., 25B, 759 (1986).