ORIGINAL PAPER

Synthesis of novel spirofused spiropyrrolidine 1,3-indanedione derivatives via 1,3-dipolar cycloaddition reactions

Mehdi Ghandi¹ · Marziyeh Eshaghi Kenari¹ · Alireza Abbasi¹

Received: 6 February 2019 / Accepted: 7 October 2019 © Iranian Chemical Society 2019

Abstract

The successful synthesis of novel spirofused spiropyrrolidine 1,3-indanedione derivatives using 1,3-dipolar cycloaddition reactions is reported. 1-Benzyl-3,5-bis[(E)-arylmethylidene]tetrahydro-4(1H)-pyridinones prepared via Knöevenagel condensation of 1-benzyl-4-piperidinone with aromatic aldehydes underwent a one-pot, three-component reaction with benzylamines and ninhydrin in ethanol to afford the desired products.

Keywords 1,3-Dipolar cycloaddition · Spirofused spiropyrrolidine 1 · 3-Indanedione · 1-Benzyl-4-piperidinone

Introduction

Multicomponent reactions (MCRs) are known as cornerstones which can be used for the synthesis of biologically interesting compounds [1-3]. These reactions, which frequently occur not through a single-step procedure, but rather by several sequential cascade or domino reactions, are powerful one-step access to products of high complexity and diversity [4, 5]. Advantages such as simplicity, high efficiency and atom economy with the preparation of complex "druglike" heterocycles in one-pot procedure can be mentioned for these reactions [6–8].

1,3-Dipolar cycloaddition is a strategic method for the construction of five-membered ring heterocycles [9–11], natural products and alkaloids [12]. Within the cycloaddition reactions, 1,3-dipolar cycloaddition of azomethine ylides with alkenes [13] is one of the most efficient and reliable strategies for the construction of functionalized fivemembered pyrrolidines which exhibit antiviral [14], local anesthetic [15] and antileukemic activities [16].

On the other hand, spiro compounds represent a class of naturally occurring substances exhibiting pronounced biological properties [17, 18]. Due to the interesting biological activities of piperidine [19, 20], this substructure has been used before in the synthesis of 1-methyl-3,5-bis[(E)-arylmethylidene]tetrahydro-4(1H)pyridinones [21]. Subsequently, these derivatives were used as dipolarophiles in reaction with isatin and benzylamines [9].

Since the serendipitous discovery of ninhydrin (1,2,3-indanetriones) [1] by Siegfried Ruhemann in 1910, it is best known for its reactions with amino acids and amines to give the colored compounds known as Ruhemann's purple [22]. Grigg and co-worker established the intermediacy of 1,3-dipoles in the formation of Ruhemann's purple [23], since reaction of ninhydrin 1 with the α -amino acids 2 in methanol in the presence of N-phenylmaleimide (4) afforded the cycloadducts 5 stereospecifically via an endo-transition state involving dipoles 3 (Scheme 1a). Moreover, heating a mixture of ninhydrin (1), benzylamines (6) and N-methylmaleimide (8) in acetonitrile furnished the cycloadduct 9 stereospecifically through *endo*-transition state involving dipoles 7 (Scheme 1b) [24]. Recall that the dipole intermediates cannot be isolated since they are generated in situ in a solution in the presence of dipolarophiles [25].

Inspired by the known properties of spiro compounds as well as piperidine together with the importance of pyrrolidines and in continuation of our own interest in this domain [26–29], herein we report a one-pot three-component access to novel spirofused spiropyrrolidine 1,3-indanedione derivatives via 1,3-dipolar cycloaddition reaction between 1-benzyl-3,5-bis[(E)-arylmethylidene]tetrahydro-4(1H)-pyridinones, benzyl amines and ninhydrin.

Mehdi Ghandi ghandi@khayam.ut.ac.ir

¹ School of Chemistry, College of Science, University of Tehran, P.O. Box 14155 6455, Tehran, Iran

Scheme 1 Synthesis of cycloadducts 5 and 9 from ninhydrin (1) and the *in situ* generated azomethine ylides 3 and 7 from a amino acids 2 and b benzylamines 6

Experimental

General information

All commercially available chemicals and reagents were purchased from Merck Chemical Company and used without further purification. Melting points were determined with an Electrothermal model 9100 apparatus and uncorrected. IR spectra were recorded on a Bomem B100 series spectrophotometer, in cm⁻¹. ¹H and ¹³C NMR spectra were recorded on a Bruker DRX-300-ADVANCE spectrometer at 500 (¹H) and 125 MHz (¹³C). Mass spectra of the products were obtained with an HP (Agilent Technologies) 5937 Mass Selective Detector. Elemental analyses were carried out by a CHN-Rapid Heraeus elemental analyzer (Wellesley, MA).

General procedure for the preparation of 13a-i

A mixture containing ninhydrin 1 or isatin 14 (0.5 mmol), dipolarophiles 12a–e (0.5 mmol) and benzylamines 6a–d (0.5 mmol) in EtOH (3 mL) was stirred at reflux for 2 to 6 h. After completion as indicated by TLC, the solid was filtered, washed with EtOH and recrystallized from acetone–ethanol mixture to afford 13a–i and 15.

1"-Benzyl-5"-((*E*)-benzylidene)-4',5'-diphenyldispiro[indene -2,2'-pyrrolidine-3',3"-piperidine]-1,3,4"-trione (13a)

White solid, Yield 0.225 g (73%), mp 220–222 °C; IR (KBr) (ν_{max} , cm⁻¹) 3340 (NH), 1697(CO), 1595 (C=C); ¹H NMR (500 MHz, DMSO-d₆) $\delta_{\rm H}$ =2.19 (d, *J*=12.4 Hz, 1H, –NCH), 2.80–2.83 (dd, *J*=2.8, 15.1 Hz, 1H, –NCHPh), 3.14 (d, *J*=15.1 Hz, 1H, –NCHPh), 3.28 (d, *J*=12.4 Hz,

1H, -NCH), 3.61 (d, J =12.6 Hz, 1H, -CHC=C), 3.60–3.66 (dd, J = 2.3, 12.6 Hz, 1H, -CHC=C), 3.7 (bs, 1H, -NH), 4.30 (d, J = 11.4 Hz, 1H, -CHPh), 5.30 (d, J = 11.4 Hz, 1H, -CHNH), 6.86–7.83 (m, 25H, Ar); ¹³C NMR (125 MHz, DMSO-d₆) δ_c = 52.2, 53.6, 57.6, 60.3, 63.1, 69.7, 70.0, 122.9, 123.4, 127.5, 127.9, 128.2, 128.4, 128.5, 128.9, 129.8, 130.2, 130.3, 130.6, 132.7, 134.2, 135.9, 136.0, 136.4, 136.8, 139.5, 143.0, 143.5, 196.5, 198.0, 198.9; EI-MS m/z (%): 614 (M⁺,1) 365 (86), 188 (52), 161 (69), 91(100), Anal. Calc for C₄₂H₃₄N₂O₃ (614.26): C 81.84, H 5.53, N 4.66%. Found: C 81.45, H 5.64, N 4.74%.

1"-Benzyl-5"-((*E*)-benzylidene)-5'-(4-fluorop henyl)-4'-phenyldispiro[indene-2,2'-pyrrolidine-3',3"-piperidine]-1,3,4"-trione (13b)

White solid, Yield 0.175 g (55%), mp 198-200 °C; IR (KBr) (v_{max} , cm⁻¹) 3342 (NH), 1697 (CO), 1593 (C=C); ¹H NMR(500 MHz, DMSO-d₆) $\delta_{\rm H} = 2.22$ (d, J = 12.4 Hz, 1H, -CHN), 2.80–2.84 (dd, J=2.7, 15.2 Hz, 1H, -NCHPh), 3.15 (d, J=15.2 Hz, 1H, -NCHPh), 3.62-3.72 (m, 3H, $-CHN, -CH_2C=C$), 3.84 (d, J=7.5 Hz, 1H, -NH), 4.35 (d, J = 11.3 Hz, 1H, -CHPh), 5.31-5.34 (dd, J = 6.65, 11.3 Hz, 1H, -CHNH), 6.84-7.84 (m, 24H, Ar); ¹³C NMR(125 MHz, DMSO-d₆) $\delta_{\rm C} = 30.2, 30.3, 30.4, 30.5, 30.6, 30.8, 69.7,$ 115.0, 116.2, 123.4, 123.5, 124.0, 127.4, 127.6, 127.9, 128.2, 128.52-128.5, 128.6, 128.8, 129.1, 129.4, 130.0, 130.2,130.3, 130.6, 130.8, 135.0–136.0, 136.8, 138.1, 138.7, 142.4, 143.0, 205.6, 206.4, 207.2; EI-MS m/z (%): 632 (M⁺, 1), 393 [29], 129 [30], 91 (100), 65 [12]; Anal. Calc for: C₄₂H₃₃FN₂O₃ (632.24): C 79.73, H 5.26, N 4.43%. Found: C 79.83, H 5.05, N 4.56%.

1"-Benzyl-5'-phenyl-4'-(pyridin-3-yl)-5"-(pyridin-3-ylmethy lene)dispiro[indene-2,2'-pyrrolidine-3',3"-piperidine]-1,3,4 "-trione (13c)

White solid, Yield 0.260 g (84%), mp 218-220 °C; IR(KBr) (v_{max}, cm⁻¹) 3336 (NH), 1698 (CO), 1595 (C=C); ¹H NMR (500 MHz, DMSO-d₆) $\delta_{\rm H} = 2.19$ (d, J = 12.4 Hz, 1H, -CHN), 2.91-2.94 (dd, J=2.8, 15.2 Hz, 1H, -NCHPh), 3.11 (d, J=15.2 Hz, 1H, -NCHPh), 3.33 (d, J=12.4 Hz, 1H, -CHN), 3.63 (d, J=12.8 Hz, 1H, -CHC=C), 3.76-3.87 (m, 2H, -CH C=C, NH), 4.40 (d, J=11.4 Hz, 1H, -CHpy), 5.37 (d, J=11.4 Hz, 1H, -CHNH), 6.85 (s, 1H, Ar), 7.19-8.44 (m, 22H, Ar); ¹³C NMR (125 MHz, DMSO-d₆) $\delta_{C} = 51.8$, 53.2, 55.2, 60.0, 62.9, 69.4, 78.9, 122.9, 123.5, 123.7, 123.8, 127.8, 128.0, 128.1, 128.6, 130.1, 130.2, 131.5, 133.4, 134.5, 135.5, 136.0, 136.6, 137.3, 137.8, 139.1, 139.2, 143.0, 143.1, 148.9, 150.1, 151.2, 151.3, 196.2, 197.7, 198.8; EI-MS m/z (%): 616 (M⁺,1), 249 (39), 233 (68), 105 (97), 77 (100), 51 (48); Anal. Calc for $C_{40}H_{32}N_4O_3$ (616.25): C 77.90, H 5.23, N 9.08%. Found: C 77.69, H 5.10, N 9.27%.

5'-(Benzo[d] [1, 3] dioxol-5-yl)-1"-benzyl-4'-(pyridin-3-yl)-5" -(pyridin-3-ylmethylene)dispiro[indene-2,2'-pyrrolidine-3', 3"-piperidine]-1,3,4"-trione (13d)

White solid, Yield 0.195 g (59%), mp 188–190 °C; IR (v _{max}, cm⁻¹) 3340 (NH), 1699 (CO); ¹H NMR (500 MHz, DMSO-d₆), $\delta_{\rm H}$ = 2.21 (d, J = 12.4 Hz, 1H, CHN), 2.90–2.93 (dd, J=2.8, 15.1 Hz, 1H, -NCHPh), 3.12 (d, J=15.1 Hz, 1H, -NCHPh), 3.32 (d, J=12.4 Hz, 1H, -CHN), 3.64 (d, J = 12.8 Hz, 1H, -CHC=C), 3.71-3.74 (dd, J = 2.2, 12.8 Hz, 1H, -CHC=C), 3.8 (bs, 1H, -NH), 4.33 (d, J=11.3 Hz, 1H, -CHpy), 5.31 (d, J = 11.3 Hz, 1H, -CHNH), 5.96 (d, J=3.4 Hz, 2H, -OCH₂O), 6.76 (d, J=7.9 Hz, 1H, Ar), 6.84 (s, 1H, Ar), 6.99–7.36 (m, 19H, Ar); ¹³C NMR (125 MHz, DMSO-d₆), $\delta_{\rm C} = 51.9$, 53.1, 55.4, 60.1, 62.6, 69.3, 79.0, 101.3, 108.0, 121.5, 122.9, 123.5, 123.7, 123.8, 128.0, 128.6, 130.0, 130.2, 131.5, 133.4, 134.5, 135.6, 136.0, 136.6, 137.1, 137.3, 137.9, 139.2, 143.1, 147.0, 147.7, 148.8, 150.1, 151.2, 151.4, 196.2, 197.6, 199.0; EI-MS m/z (%): 660 (1, M⁺), 367 [16], 339 [15], 276 (39, 91 (100); Anal. Calc for C₄₁H₃₂N₄O₅ (660.24): C 74.53, H 4.88, N 8.48%. Found: C 74.72, H 4.69, N 8.65%.

1"-Benzyl-5"-((*E*)-4–CHlorobenzylidene)-4'-(4–CHloropheny I)-5'-phenyldispiro[indene-2,2'-pyrrolidine-3',3"-piperidine] -1,3,4"-trione (13e)

White solid, Yield 0.250 g (73%), mp 217-219 °C; IR (KBr) $(v_{\text{max}}, \text{ cm}^{-1})$ 3342 (NH), 1697 (CO), 1593 (C=C); ¹H NMR (500 MHz, DMSO-d₆) $\delta_{\rm H} = 2.18$ (d, J = 12.4 Hz, 1H, -CHN), 2.84-2.87 (dd, J=2.8, 15.0 Hz, 1H, -NCHPh), 3.12 (d, J = 15.0 Hz, 1H, -NCHPh), 3.28-3.31 (dd, J = 1.5, J)J = 12.4 Hz, 1H,-CHN), 3.61 (d, J = 12.6 Hz, 1H, -CHC=C), 3.67 (d, J=12.6 Hz, 1H, -CHC=C), 3.85 (s, 1H, -NH), 4.41 (d, J=11.2 Hz, 1H, -CHPhCl), 5.29 (d, J=11.2 Hz, 1H, -CHNH), 6.83 (s, 1H, Ar), 6.93 (d, J=8.1 Hz, 2H, Ar), 7.17–7.83 (m, 20H, Ar); ¹³C NMR (125 MHz, DMSO-d₆) $\delta_{\rm C} = 52.0, 53.4, 56.9, 60.2, 63.2, 69.5, 78.91, 122.9, 123.4,$ 127.7, 128.0, 128.1, 128.5, 128.6, 128.9, 129.2, 130.2, 132.1, 132.3, 132.5, 133.1, 133.3, 134.4, 134.9, 135.4, 135.7, 136.0, 136.6, 139.3, 143.0, 143.2, 196.4, 197.8, 198.8. EI-MS m/z (%): 684 (M⁺, 1), 249 (100), 220 (50), 165 (70), 89 (75); Anal. Calc for $C_{42}H_{32}Cl_2N_2O_3$ (682.18): C 73.79, H 4.72, N 4.10%. Found: C 73.52, H 4.76, N 4.21%.

1"-Benzyl-5"-((*E*)-4-chlorobenzylidene)-4'-(4-chlorophenyl) -5'-(4-fluorophenyl)dispiro[indene-2,2'-pyrrolidine-3',3"-pip eridine]-1,3,4"-trione (13f)

White solid, Yield 0.160 g (42%), mp 202–204 °C; IR (KBr) (ν_{max} , cm⁻¹) 3343 (NH), 1698 (CO), 1595 (C=C); ¹H NMR (500 MHz, DMSO-d₆) $\delta_{\rm H}$ =2.18 (d, *J*=12.4 Hz, 1H, –CHN), 2.84–2.87 (dd, *J*=2.8, 15.2 Hz, 1H, –NCHPh),

3.10 (d, J = 15.2 Hz, 1H, –NCHPh), 3.30 (d, J = 12.4 Hz, 1H, –CHN), 3.61 (d, J = 12.7 Hz, 1H, –CHC=C), 3.67 (dd, J = 2.3, 12.7 Hz, 1H, –CHC=C), 3.70 (s, 1H, –NH), 4.33 (d, J = 11.3 Hz, 1H, –CHPhCl), 5.31 (d, J = 11.3 Hz, 1H, –CHNH), 6.80 (s, 1H, CH=), 7.08–7.82 (m, 21H, Ar); ¹³C NMR(125 MHz, DMSO-d6) $\delta_{\rm C} = 56.7, 58.1, 61.8, 65.0, 67.1, 74.2, 83.8, 119.9, 120.1, 127.7, 128.2, 132.7, 133.3, 133.6, 134.6, –134.7, 135.0, 136.9, 137.1, 137.1, 137.8, 139.2, 139.4, 138.0–140.4, 140.2, –140.8, 141.3, 144.1, 144.3, 144.3, 147.8, 165.7, 167.6, 201.1, 202.4, 203.5; IE-MS m/z (%): 701 (M⁺,1), 267 (100), 238 [35], 183 (61), 146 (40), 105 (60), 76 (45); Anal. Calc for C₄₂H₃₁Cl₂FN₂O₃ (700.17): C 71.90, H 4.45, N 3.99%. Found: C 72.04, H 4.38, N 4.04%.$

1"-Benzyl-5'-phenyl-4'-(thiophen-2-yl)-5"-(thiophen-2 ylmethylene)dispiro[indene-2,2'-pyrrolidine-3',3"-piperidin e]-1,3,4"-trione (13 g)

White solid, Yield: 0.26 g (83%), mp 201–203 °C; IR (KBr) (ν_{max} , cm⁻¹): 3350 (NH), 1743 (CO), 1570 (C=C); ¹H NMR (500 MHz, DMSO-d₆) $\delta_{\rm H}$ =2.33 (d, *J*=12.5 Hz, 1H, –CHN), 2.79–2.83 (dd, *J*=2.7, 15.8 Hz, 1H, NCHPh), 3.16 (d, *J*=15.8, 1H, NCHPh), 3.34 (d, *J*=12.5 Hz, 1H, –CHN), 3.57–3.60 (dd, *J*=2.1, 12.6 Hz, 1H, –CHC=C), 3.69 (d, *J*=12.6 Hz, 1H, –CHC=C), 3.83 (s, 1H, –NH–), 4.65 (d, *J*=11.1 Hz, 1H, –CHthio), 5.09 (d, *J*=11.1 Hz, 1H,

-CHNH), 6.85 (s, 1H, CH=), 6.86–7.84 (m, 20H, Ar); ¹³C NMR (125 MHz, DMSO-d₆) $\delta_{\rm C}$ = 52.2, 53.0, 53.3, 60.5, 64.6, 69.08, 79.3, 123.0, 123.4, 125.6, 127.3, 127.3, 127.8, 128.1, 128.1, 128.4, 128.5, 128.7, 128.5, 129.6, 130.0, 130.3, 133.8, 135.7, 136.0, 136.5, 137.5, 138.2, 139.4, 142.7, 143.3, 195.1, 197.4, 198.7; IE-Ms m/z (%): 626 (M⁺,1), 377 (68), 202 (46), 121 [33], 91 (100); Anal. Calc for C₃₈H₃₀N₂O₃S₂ (626.17): C 72.82, H 4.82, N 4.47; S 10.23%. Found C 72.75, H 4.74, N 4.40, S 10.19%.

1"-Benzyl-4'-(pyridin-3-yl)-5"-(pyridin-3-ylmethylene)-5'-(p -tolyl)dispiro[indene-2,2'-pyrrolidine-3',3"-piperidine]-1,3, 4"-trione (13 h)

White solid, 0.243 g (77%), mp 208–210 °C; IR (KBr) (ν_{max} , cm⁻¹): 3342 (NH), 1695 (CO), 1595 (C=C); ¹H NMR (500 MHz, DMSO-d₆) $\delta_{\rm H}$ =2.15 (d, J=12.4 Hz, 1H, –CHN), 2.22 (s, 3H, Me), 2.90 (d, J=15.2 Hz, 1H, –NCHPh), 3.08 (d, J=15.2 Hz, 1H, –NCHPh), 3.31 (d, J=12.4 Hz, 1H, –CHN), 3.60 (d, J=12.6 Hz, 1H, –CHC=C), 3.73 (d, J=12.6 Hz, 1H, –CHC=C), 3.85 (s, 1H, –NH), 4.34 (d, J=11.4 Hz, 1H, –CHP), 5.30 (d, J=11.4 Hz, 1H, –CHNH), 6.83 (s, 1H, CH=), 7.07–8.43 (m, 21H, Ar); ¹³C NMR (125 MHz, DMSO-d₆) $\delta_{\rm C}$ =21.1, 53.17, 55.1, 56.3, 60.0, 62.6, 69.3, 78.7, 122.9, 123.4, 123.7, 123.8, 128.0, 128.5, 129.2, 130.1, 130.2, 131.6, 133.4, 134.5, 135.4, 136.0, 136.6, 136.9, 137.3, 137.8, 139.1, 139.8, 139.8,

Scheme 3 Synthesis of spirofused spiropyrrolidine 1,3-indanediones 13a-i

Table 1 Synthesis of spirofused spiropyrrolidine 1,3-indanediones 13a-i

Table 1 (continued) Entry Dipolarophile Benzylamine Yield (%) Product 0 0 П Η 5 73 Cl Ph/ H₂N **6a** 13e 12c 0 || F Cl 6 55 Cl H₂N Ph/ 12c 6b 13f 0 || 0 Ξ 7 Н 0 83 0 H₂N Ph/ 6a 13g 12d Me 0 || 0 Me 8 77 H H₂N Ph 12b 13h **6d**

Table 1 (continued)

Scheme 4 Synthesis of spirofused spiropyrrolidine oxindole 15

Fig. 1 ORTEP diagram of 15

143.1, 148.8, 150.1, 151.1, 151.3, 196.3, 197.8, 198.9; IE-MS: m/z (%): 630 (M^{+,}1), 416 [13], 366 (68), 276 (76), 91 (100); Anal. Calc for $C_{41}H_{34}N_4O_3$ (630.75): C 78.07, H 5.43, N 8.88%. Found; C 78.29, H 5.25, N 8.76%.

1"-Benzyl-4'-(thiophen-2-yl)-5"-(thiophen-2-ylmethylene)-5'-(p-tolyl)dispiro[indene-2,2'-pyrrolidine-3',3"-piperidine]-1,3,4"-trione (13i)

White solid, Yield 0.220 g (68%), mp 202–204 °C; IR (KBr) (ν_{max} , cm⁻¹): 3345 (NH), 1740 (CO), 1508 (C=C); ¹H NMR (500 MHz, DMSO-d₆) $\delta_{\rm H}$ =2.10 (s, 3H, Me), 2.32 (d, J=12.4 Hz, 1H, –CHN), 2.81 (d, J=15.3 Hz, 1H, –NCHPh), 3.15 (d, J=15.3 Hz, 1H, –NCHPh), 3.34 (d, J=12.4 Hz, 1H, –CHN), 3.58 (d, J=12.4 Hz, 1H, –CHC=C), 3.69 (d, J=12.4 Hz, 1H, –CHC=C), 3.82 (s, 1H, –NH-), 4.61 (d, J=11.2 Hz, 1H, –CHC=C), 5.05 (d, J=11.2 Hz, 1H, –CHNH), 6.86 (s, 1H, CH=), 6.94 (s, 1H, Ar), 7.11–7.87 (m, 18H, Ar); ¹³C NMR (125 MHz, DMSO-d₆) $\delta_{\rm C}$ =21.2, 52.9, 53.3, 53.6, 64.4, 64.4, 69.0, 79.2, 122.9, 123.4, 125.6, 127.3, 128.1, 128.5, 128.7, 128.9, 129.1, 129.7, 130.0, 130.3, 133.8, 135.6, 135.8, 136.0, 136.5, 136.8, 136.9, 137.5, 138.2, 139.4, 140.1, 142.0, 197.5, 197.7, 198.7; IE-MS m/z (%): 640 (M⁺, 1), 404 [25], 377 (77), 202 (94), 91 (100);

Scheme 5 Synthesis of spirofused spiropyrrolidine oxindole derivative 15 via endo-transition state

Scheme 6 Synthesis of spirofused spiropyrrolidine 1,3-indanediones derivatives 13a-i via endo-transition states

Anal. Calc for $C_{39}H_{32}N_2O_3S_2$ (640.82): C 73.10, H 5.03, N 4.37, S 10.01%. Found: C 72.92, H 4.96, N 4.80, S 9.89%.

1"-Benzyl-5"-((*E*)-4-methylbenzylidene)-4'-phenyl-3'-(p-to lyl)dispiro[indoline-3,1'-cyclopentane-2',3"-piperidine]-2,4 "-dione [15]

White crystal, Yield 0.24 g (76%), mp 226-227 °C; IR (KBr) $(v_{\text{max}}, \text{ cm}^{-1})$: 3027 (NH), 1685 (CO), 1509 (C=C); ¹H NMR (500 MHz, DMSO-d₆), $\delta_{\rm H} = 1.82$ (d, J = 12.5 Hz, 1H, -CHN), 2.20 (s, 3H, Me), 2.24 (s, 3H, Me), 2.74 (dd, 14.8 Hz, 1H, -NCHPh), 3.04 (d, J = 10.6 Hz, 1H, -CHC = C), 3.14 (d, J = 14.8 Hz, 1H, -NCHPh), 3.54 (m, 2H, NH, $-CH_2C=C$), 3.61 (d, J=12.5 Hz, 1H, -CHN), 4.46 (d, J = 10.3 Hz, 1H, -CHPhMe), 5.37 (dd, J = 6.0, 10.3 Hz, 1H, CHNH), 6.65 (d, J=7.6 Hz, 1H, Ar), 6.80–6.90 (m, 3H, Ar), 6.92–7.27 (m, 13H, Ar), 7.48 (d, J=6.9 Hz, 2H, Ar), 10.44 (s, 1H, -NHCO); ¹³C NMR (125 MHz, DMSO d_6): $\delta_C = 21.1, 21.3, 53.9, 57.3, 57.8, 62.4, 63.5, 65.1, 71.7,$ 109.1, 120.9, 127.3, 127.4, 127.6, 128.0, 128.4, 128.5, 128.7, 129.3, 129.4, 129.4, 129.6, 130.0, 130.4, 132.2, 132.6, 135.2, 136.1, 137.0, 137.4, 139.3, 142.8, 143.3, 180.2, 199.0; IE-MS m/z (%): 629 (1, M⁺), 393 [25], 365 [10], 207 [17], 115 [28], 133 (63), 91 (100); Anal. Calcd for C₄₃H₃₉N₃O₂ (629.30): C 82.01, H 6.24, N 6.67%. Found: C 81.55, H 6.47, N 6.84%.

Results and discussion

Initially, 1-benzyl-3,5-bis[(E)-arylmethylidene]tetrahydro-4(1H)-pyridinone derivatives **12a-d** were prepared via Knöevenagel condensation of 1-benzyl-4-piperidinone 10 with aromatic aldehydes 11a-d using the previously reported procedure [21] (Scheme 2). In the next step, a mixture of ninhydrin 1 and benzylamines 6a-d was stirred at room temperature for 10 min. After the formation of the corresponding imines as indicated by change in color from yellow to light violet, derivatives **12a-d** were added and the deep violet solutions heated at reflux for appropriate times. Upon completion as indicated by TLC, the solids were separated and washed with cold EtOH. Recrystallization of solids from a mixture of acetone and EtOH finally afforded the desired products 13a-i in satisfactory yields (Scheme 3, Table 1). All compounds were characterized by elemental analysis, MS, IR, and ¹H and ¹³C NMR spectroscopy. The stereochemistry of 13a-i was apparent on the basis of ¹H NMR spectra in which benzylic protons of pyrrolidine rings appear as two doublets with J = 11.1 to 11.4 Hz, indicating a trans stereochemistry. Since no X-ray crystallography could be obtained for 13a-i, isatin 14 was used to study its reaction with **12e** and benzylamine (**6a**).

As shown in Scheme 4, the product **15** is formed with high regio- and stereoselectivity with vicinal *trans* benzylic protons confirmed by using monocrystal X-ray diffraction analysis (Fig. 1) [30]. The regioselectivity observed in **15** can be attributed to the regioselective *endo*-approach of the dipole toward the termini of the dipolarophile **12e** (Scheme 5).

Since the *trans* benzylic protons of **13a–i** appear as a doublet with large coupling constants between J = 11.1to 11.4 Hz, the formation of spirofused spiropyrrolidine 1,3-indanediones **13a–i** via the *endo*-transition states of the dipole toward the termini of the dipolarophiles **12a–d** with vicinal *trans* benzylic protons is concluded (Scheme 6).

These cycloadditions are chemoselective since addition occurs exclusively on one double bond of **12a–d**, affording the mono-spiropyrrolidine 1,3-indanedione derivatives, perhaps due to the steric effect experienced on the *in situ* generated azomethine ylides by **13a–i** on the second cycloaddition to bis-spiropyrrolidine 1,3-indanediones. Moreover, these cycloadditions also proceed stereoselectively since in all cases only one diastereomer with four stereocenters is obtained in satisfactory yields (55–84%).

Conclusion

In conclusion, a number of spirofused spiropyrrolidine 1,3-indanediones were synthesized via a three-component reaction of 1-benzyl-3,5-bis[(E)-arylmethylidene]tetrahydro-4(1H)-pyridinones **12a–d** with benzyl amines **6a–d** and ninhydrin [**1**]. These new structures broaden the hybrid scaffolds that are accessible through a one-pot reaction, and many of them may represent interesting pharmacophores.

Acknowledgements The authors acknowledge the University of Tehran for financial support of this research.

References

- B. Liang, S. Kalidindi, J.R. Porco Jr., C.R. Stephenson, Org. Lett. 12, 572 (2010)
- 2. S.L. Cui, X.F. Lin, Y.G. Wang, Org. Lett. 8, 4517 (2006)
- 3. B. Ganem, Acc. Chem. Res. 42, 463 (2009)
- K. Kriis, K. Ausmees, T. Pehk, M. Lopp, T. Kanger, Org. Lett. 12, 2230 (2010)
- 5. J.D. Sunderhaus, S.F. Martin, Chem. Eur. J. 15, 1300 (2009)
- 6. L. Banfi, R. Riva, Org. Reaction 65, 1 (2005)
- 7. D.J. Ramón, M. Yus, Angew. Chem. Int. Ed. 44, 1602 (2005)
- 8. A. Dömling, Chem. Rev. 106, 17 (2006)
- 9. R.R. Kumar, S. Perumal, Tetrahedron 63, 12220 (2007)
- 10. M.S. Singh, S. Chowdhury, S. Koley, Tetrahedron 72, 1603 (2016)
- 11. A.A. Raj, R. Raghunathan, Tetrahedron 57, 10293 (2001)
- V. Jager, R. Muller, T. Liebold, M. Hein, M. Schwarz, M. Fengler, L. Jaroskova, M. Patzel, P.Y. Le Roy, P. Bull. Soc. Chim. Belg. 103, 491 (1994)

- 13. I. Coldham, R. Hufton, Chem. Rev. 15, 2765 (2005)
- 14. N. Uchide, K. Ohyama, J. Antimicrob. Chemother. 52, 8 (2003)
- 15. M.J. Kornett, A.P. Thio, J. Med. Chem. 19, 892 (1976)
- 16. M.A. Abou-Gharbia, P.H. Doukas, Heterocycles 12, 637 (1979)
- J. Kobayashi, M. Tsuda, K. Agemi, H. Shigemori, M. Ishibashi, T. Sasaki, Y. Mikami, Tetrahedron 47, 6617 (1991)
- D.M. James, H.B. Kunze, D.J.J. Faulkner, D. Nat, Prod. 54, 1137 (1991)
- E. Abignente, M. Biniecka-Picazio, M. Acta Pol. Pharm. 34, 241 (1977)
- J.R. Dimmock, J.A. Jha, G.A. Zello, G.R.K. Sharma, A. Shrivastav, P. Selvakumar, T.M. Allen, C.L. Santos, J. Balzarini, E. De Clercq, E.K. Manavathu, J.P.J. Stables, Enzyme Inhib. Med. Chem. 18, 325 (2003)
- Z.G. Han, S.J. Tu, B. Jiang, S. Yan, X.H. Zhang, S.S. Wu, W.J. Hao, X.D. Cao, F. Shi, G. Zhang, N. Ma, Synthesis, 1639 (2009)

- 22. S. Ruhemann, J. Chem. Soc. 97, 1438 (1910)
- R. Grigg, S. Thianpatanagul, J. Chem. Soc. Chem. Commun. 180 (1984)
- 24. H. Ardill, M.J.R. Dorrity, R. Grigg, Tetrahedron 46, 6433 (1990)
- A.S. Filatov, S. Wang, O.V. Khoroshilova, S.V. Lozovskiy, A.G. Larina, V.M. Boitsov, A.V. Stepakov, J. Org. Chem. 84, 7017 (2019)
- M. Ghandi, A. Yari, S.J. Tabatabaei Rezaei, A. Taheri, Tetrahedron Lett. 50, 4724 (2009)
- 27. M. Ghandi, A. Taheri, A. Abbasi, Tetrahedron 66, 6744 (2010)
- M. Ghandi, A. Taheri, A. Hasani Bozcheloei, A. Abbasi, R. Kia, Tetrahedron 68, 3641 (2012)
- 29. M. Ghandi, N. Zarezadeh, A. Abbasi, RSC Adv. 6, 67805 (2016)
- Crystallographic data for 6a has been deposited in the Cambridge Crystallographic Data Centre with the deposition numbers CCDC 1953641. http://www.ccdc.ca-m.ac.uk/conts/retrieving.html