

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 7619-7621

Tetrahedron Letters

A metalation strategy for the construction of functionalized naphthalenes: the first synthesis of guieranone A

Malcolm W. B. McCulloch and Russell A. Barrow*

Department of Chemistry, The Australian National University, Canberra ACT 0200, Australia

Received 4 July 2005; revised 16 August 2005; accepted 23 August 2005 Available online 16 September 2005

Abstract—The first synthesis of the natural product guieranone A is described, demonstrating a one-pot procedure for the synthesis of protected-1,3,6,8-tetraoxygenated naphthalenes and a subsequent directed metalation synthesis of 2-keto naphthalenes. © 2005 Elsevier Ltd. All rights reserved.

Syntheses of 2-acyl substituted naphthalenes are difficult to achieve regioselectively, yet these compounds are key building blocks for a large number of naphthalene-based natural products including naphthopyrones and some naphthoquinones. This diverse class of natural products possesses a range of biological activities and new methods to synthesize them are required.¹ This communication outlines a short and efficient synthesis of guieranone A $(1)^2$ showcasing a directed metalation strategy that we are developing which should provide access to a variety of naphthalene-based natural products and derivatives.

Guieranone A (1) is an antifungal agent isolated from the leaves of the plant *Guiera senegalensis* by Silva and Gomes.² The position of the butenone moiety in guieranone A—situated on the naphthalene ring *ortho* to two methoxy groups—suggested an *ortho*-directed metalation reaction as an appropriate synthetic strategy. We proposed to utilize both the synthetically useful methoxy directed metalation group (DMG) and the powerful diethyl carbamate³ DMG in the synthesis of the natural product, and in preparing 2-keto naphthalene analogues.

While the naphthalene synthon required to prepare 1 via this strategy is known, previous syntheses of 1,3,6,8-tetramethoxynaphthalene (7) have been inefficient.^{4,5} We have developed a high-yielding, one-pot synthesis

of protected naphthalenes such as 7 and 8 from the phenylacetic acid derivative 5.

Our synthesis (Scheme 1) began with methyl 3,5-dimethoxyphenylacetate (4), which was readily prepared following Pang's method.⁶ This was acylated with acetic anhydride containing a catalytic amount of perchloric acid, in a slight modification of Bycroft's procedure to give $5.^7$

Treatment of **5** in DMF with 3.3 equiv of sodium hydride gave the naphthalene disodium salt intermediate **6**, via a Dieckmann-type cyclization. The excess of base prevented formation of the phenol **2**,⁸ which contains a *peri* six-centered hydrogen bond. These *peri* hydrogen bonds make phenol substitution difficult; for example, Kamila et al. found that the phenol in naphthalene **3** was relatively unreactive towards substitution.⁹

Attempts to synthesize protected 1,3,6,8-tetraoxygenated naphthalenes by quenching the intermediate **6** with soft electrophiles such as iodomethane or MOM-Cl, repeatedly led to the formation of complex mixtures. However, when the relatively hard electrophiles dimethyl sulfate or diethylcarbamoyl chloride were utilized, the naphthalenes **7** and **8** were formed cleanly in 85% and 89% respective yields. Soft electrophiles can

Keywords: Guieranone; Naphthalenes; Metalation; Natural product; Dieckmann cyclization.

^{*} Corresponding author. Tel.: +61 2 61253419; fax: +61 2 61250760; e-mail: rab@anu.edu.au

^{0040-4039/\$ -} see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.08.127

Scheme 1. Reagents, conditions and yields: (i) Ac₂O, HClO₄ (cat), 24 h, 85%; (ii) 3.3 equiv NaH, DMF, 2 h; (iii) for 7, (CH₃)₂SO₄, 12–48 h, 85%; for 8, ClCONEt₂, 72 h, rt, then reflux 2 h, 89%; (iv) for 1, 1.4 equiv *n*-BuLi, 1.4 equiv TMEDA, THF, -78 °C, 1 h, then 70 min, rt, then -78 °C, 1.6 equiv crotonic anhydride to rt, 28% (unoptimized); for 9, 1.3 equiv *t*-BuLi, 1.3 equiv TMEDA, THF, -78 °C, 45 min, then 40 min, -40 °C, then -78 °C, 2.0 equiv crotonic anhydride to rt, 61% (unoptimized).

presumably react with the soft carbon center in 6, given that 6 is effectively an enolate.

With naphthalenes 7 and 8 in hand, a final metalation step gave us our desired 2-keto naphthalenes. Thus, when 7 was treated with 1.4 molar equivalents of *n*-BuLi and TMEDA, followed by excess crotonic anhydride,[†] guieranone A (1) was obtained in an unoptimized 28% isolated yield (~80% based on recovered starting material). Similarly, when 8 was treated with 1.3 molar equivalents of *t*-BuLi and TMEDA, followed by excess crotonic anhydride, 9 was obtained in 61% isolated yield.¹⁰ While these results are unoptimized, the higher yield of 9 reflects the relative strength of the carbamate DMG.³

The spectroscopic data (IR, MS, and NMR) of our synthetic guieranone A sample supported the assigned structure 1; the data were identical to those reported for the natural product.² Table 1 shows that the ¹³C NMR shifts for synthetic 1 match those of the natural product within the bounds of spectral resolution.

Silva reported that guieranone A showed potent activity against the fungus *C. cucumerinum.*² To explore the extent of this antimicrobial activity we have tested **1** against a range of microorganisms using the disk diffusion method¹¹ at concentrations up to 0.6 mg/mL and found no activity against an unidentified *Penicillium* sp. or against any of the following bacterial pathogens: *S. aureus, E. coli, P. aeruginosa, S. epidermidis,* or *M. smegmatis.* These results indicate that guieranone A possesses selective and specific antifungal activity.

In conclusion, we have completed the first synthesis of guieranone A (1) and developed a versatile synthesis of 2-keto naphthalenes. By starting with various phenyl-acetic acid derivatives, and using a range of different

Table	1.	Comparison	of	synthetic	and	natural	guieranone	(1)	^{13}C
NMR	sh	ifts							

Position	Synth. $\delta_{\rm C}{}^{\rm a}$	Lit. ^{2,b}
1	197.8	197.9
2	135.2	135.2
3	149.4	149.3
4	18.5	18.4
1'	155.6	155.6
1'-OMe	64.2	64.2
2'	122.7	122.8
3'	156.4	156.5
3'-OMe	56.3	56.3
4'	103.4	103.4
4a′	140.7	140.8
5'	99.8	99.8
6'	160.8	160.9
6'-OMe	56.1	56.1
7'	98.4	98.3
8'	158.6	158.7
8'-OMe	55.8	55.8
8a'	111.5	111.6

^a 75 MHz APT; CD₃OD.

^b 100 MHz; CD₃OD.

electrophiles in the cyclization/protection and metalation steps, this methodology can give a range of highly functionalized naphthalene derivatives. This will be further elaborated in a forthcoming full paper.

Acknowledgements

One of us (M.W.B.M) would like to thank the ANU for an ANU PhD Graduate School Scholarship.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet. 2005.08.127.

[†]Freshly prepared by DCC dehydration of crotonic acid and then distilled.

References and notes

- 1. McCulloch, M. W. B.; Barrow, R. A. Molecules, in press.
- 2. Silva, O.; Gomes, E. T. J. Nat. Prod. 2003, 66, 447-449.
- 3. Snieckus, V. Chem. Rev. 1990, 90, 879-933.
- 4. Eisaku, M.; Shibata, S. Chem. Pharm. Bull. 1967, 15, 1765–1771.
- Sargent, M. V. J. Chem. Soc., Perkin Trans. 1 1987, 231– 235.
- Pang, Y. P.; Kozikowski, A. P. J. Org. Chem. 1991, 56, 4499–4508.
- Bycroft, B. W.; Roberts, J. C. J. Chem. Soc. 1962, 2063– 2064.
- Bycroft, B. W.; Roberts, J. C. J. Chem. Soc. 1963, 4868– 4872.
- 9. Kamila, S.; Mukherjee, C.; Mondal, S. S.; De, A. *Tetrahedron* 2003, *59*, 1339–1348.
- 10. Satisfactory spectroscopic data were obtained for all compounds. Selected data: Compound 7: ¹H NMR (300 MHz, CDCl₃) &: 6.62 (2H, d, 2.3 Hz), 6.36 (2H, d, 2.3 Hz), 3.92 (6H, s), 3.88 (6H, s); ¹³C APT-NMR (75 MHz, CDCl₃) δ: 158.6, 158.4, 139.0 (C-4a), 108.5 (C-8a), 98.3 (C-4), 96.5 (C-2), 56.0 (C-1–OCH₃), 55.1 (C-3– OCH₃); EIMS m/z (%): 248 (100), 205 (9), 175 (12); HREI-MS m/z: found 248.1049 (C₁₄H₁₆O₄ requires 248.1049). Compound **8**: IR (film): 1720 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) *δ*: 7.32 (1H, d, 2.3 Hz), 6.83 (1H, d, 2.3 Hz), 6.67 (1H, d, 2.2 Hz), 6.41 (1H, d, 2.2 Hz), 3.84 (3H, s), 3.82 (3H, s), 3.55-3.33 (8H, m, CON(CH₂CH₃)₂), 1.31-1.19 $CDCl_3$) δ : 158.4 (C-6), 156.6 (C-8), 154.6 (CONEt₂), 153.7 (CONEt₂), 149.4 (C-3), 148.1 (C-1), 137.5 (C-4a), 115.2 (C-4), 113.5 (C-8a), 113.2 (C-2), 98.5 (C-5), 98.3 (C-7), 55.4 (OCH₃), 55.2 (OCH₃), [42.4, 42.1, 42.0, 41.6 (CON(CH₂CH₃)₂)], [14.1, 13.9, 13.4, 13.1 (CON(CH₂-

 $(CH_3)_2$]. EIMS m/z (%): 418 (53), 100 (100), 72 (55); HREI-MS m/z: found 418.2096 (C₂₂H₃₀N₂O₆ requires 418.2104). Compound 9: IR (film): 1720, 1630 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ: 7.53 (1H, s), 7.13 (1H, dq, 15.6, 6.9 Hz), 6.66 (1H, d, 2.0 Hz), 6.39 (1H, d, 2.0 Hz), 6.03 (1H, dq, 15.6, 1.8 Hz), 3.81 (3H, s), 3.72 (3H, s), 3.42-3.15 (8H, m), 1.92 (3H, dd, 6.9, 1.8 Hz), 1.18-0.97 (12H, m); ¹³C APT-NMR (75 MHz, CDCl₃) δ: 164.1 (C-1), 163.9 (CONEt₂), 158.8 (C-6'), 156.6 (C-8'), 152.9 (CONEt₂), 146.2 (C-3), 145.5, 143.5, 136.9 (C4a'), 121.8 (C-2), 120.7 (C-2'), 116.7 (C-4'), 112.6 (C-8a'), 99.1 (C-7'), 98.7 (C-5'), 55.8 (6'-OCH₃), 55.2 (8'-OCH₃), [42.7, 42.1, 41.9, 38.1 (CON(CH₂CH₃)₂)], 18.0 (C-4), [14.0, 13.4, 13.2, 12.6 (CON(CH₂CH₃)₂)]; EIMS *m*/*z* (%): 486 (28), 418 (34), 403 (20), 346 (27), 100 (100), 72 (54); HREI-MS m/z: found 486.2366 (C26H34N2O7 requires 486.2366). Compound 1: ¹H NMR (300 MHz, CD₃OD) δ : 7.01 (1H, s), 6.81 (1H, d, 2.0 Hz), 6.61 (1H, dq, 15.5, 6.7 Hz), 6.47 (1H, d, 2.0 Hz), 6.35 (1H, dq, 15.5, 1.6 Hz), 3.91 (3H, s), 3.88 (3H, s), 3.83 (3H, s), 3.71 (3H, s), 1.90 (3H, dq, 6.7, 1.6 Hz); ^{1}H NMR (300 MHz, CDCl₃) δ: 6.83 (1H, s), 6.66 (1H, d, 2.0 Hz), 6.58 (1H, dq, 15.5, 6.5 Hz), 6.40 (1H, d, 2.0 Hz), 6.38 (1H, dq, 15.5, 1.5 Hz), 3.93 (3H, s), 3.88 (3H, s), 3.82 (3H, s), 3.76 (3H, s), 1.86 (3H, dd, 6.5, 1.5 Hz); ¹³C APT-NMR (75 MHz, CD₃OD) see Table 1; ¹³C APT-NMR (75 MHz, CDCl₃) δ: 195.5 (C-1'), 159.0 (C-6'), 157.4 (C-8'), 155.2 (C-3'), 154.5 (C-1'), 147.0 (C-3), 138.8 (C-4a'), 134.2 (C-2), 122.0 (C-2'), 110.6 (C-8a'), 101.9 (C-4'), 98.3 (C-5'), 97.0 (C-7'), 63.9 (C-1'-OCH₃), 55.8 (C-8'-OCH₃), 55.5 (C-3'-OCH₃), 55.2 (C-6'-OCH₃), 18.3 (C-4); HREI-MS *m*/*z*: found 316.1310 (C₁₈H₂₀O₅ requires 316.1311).

 National Committee for Clinical Laboratory Standards (NCCLS). *Performance Standards for Antimicrobial Disk Susceptibility Tests*; Approved standard. 7th edn., M2-A7. NCCLS, Wayne, PA, 2000.