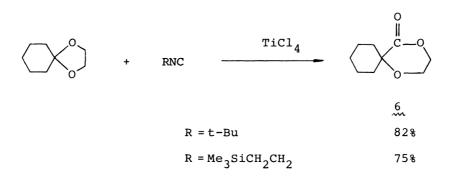

CYANATION OF ACETALS WITH t-BUTYL ISOCYANIDE-TiCl₄ SYSTEM

Yoshihiko ITO,^{*} Hiroshi IMAI, Kazuo SEGOE, and Takeo SAEGUSA^{*} Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Kyoto 606

Cyanation of acetals was achieved by t-butyl isocyanide in the presence of TiCl_4 , producing cyanohydrin ethers in good yields. β -(Trimethylsilyl)ethyl isocyanide in the combination with TiCl_4 effected the cyanation as well.


Cyantion is an important synthetic reaction which introduces one carbon unit into the substrate. Methods utilizing metal cyanides such as diethylaluminum cyanide¹⁾ and trimethylsilyl cyanide²⁾ have been developed for cyanation reactions. Recently, we reported a novel conjugate hydrocyanation of α , β -unsaturated ketones with t-butyl isocyanide in combination with TiCl₄.³⁾ The equivalency of t-butyl isocyanide to HCN in the cyanation reaction is not only mechanistically interesting but also practically useful.

Now we wish to describe here a new cyanation of acetals with the t-butyl isocyanide-TiCl₄ system.


The procedure of cyanation with t-butyl isocyanide $-\text{TiCl}_4$ system is quite simple, which is carried out as follows. To a stirred solution of 288 mg (2 mmol) of cyclohexanone dimethyl acetal and 0.22 mL (2 mmol) of TiCl_4 in 6 mL of methylene chloride, 166 mg (2 mmol) of t-butyl isocyanide was dropwise added at -70 °C, and then allowed to warm up to 20 °C over 2-3 h, and finally quenched with aqueous NaHCO₃. Extractive workup with methylene chloride followed by Kugel Rohr distillation afforded cyclohexanone cyanohydrin methyl ether (92% yield). Some results of cyanation of acetals are summarized in Table 1.

Use of primary and secondary alkyl isocyanides instead of t-butyl isocyanide in the present reaction did not afford cyanohydrin ether 2, but it gave N-alkyl α -alkoxycarboxamide 5 as already reported by Mukaiyama.⁴⁾ However, β -(trimethylsilyl)ethyl isocyanide⁵⁾ in combination with TiCl₄ effectuated the cyanation of acetal as well. These findings are consistent with the following mechanism involving N-substituted imidoyl cation intermediate 4, followed by β -elimination.

It is conceivable that the so-called β -effect of silicon⁶ facilitates the elimination of β -(trimethylsilyl)ethyl carbonium ion from intermediate 4.

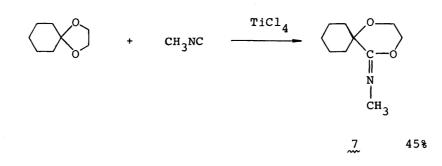
The reaction of ethylene acetals with t-butyl isocyanide or β -(trimethylsilyl) ethyl isocyanide in the presence of TiCl₄ gave spiro-lactones^{7,8}) in high yields, after aqueous workup.

Acetal	Isonitrile	Cyanohydrin ether	(Yield/%)
CCH3 OCH3	t-BuNC Me ₃ SiCH ₂ CH ₂ NC ^{a)}	CN OCH ₃	(92) (88)
+ $ +$ $ -$	t-BuNC Me ₃ SiCH ₂ CH ₂ NC ^{a)}	$+ \sim \sim_{\text{och}_3}^{\text{cn}}$	(95) ^{b)} (90) ^{C)}
CCH3 CCH3	t-BuNC	CN OCH ₃	(86)
PhCH OCH3	t-BuNC	PhCH CN	(96)
I (CH) CH OCH ₃	t-BuNC	CH (CH) CH CN	(81)
⁴ 3 (CH ²) ³ CH OCH ³	Me ₃ SiCH ₂ CH ₂ NC ^{a)}	сн ₃ (сн ₂) ₃ сн осн ₃	(82)

Table 1. A Cyanation of Acetals with Isonitrile-TiCl₄ System

- a) Cyanation with $Me_3SiCH_2CH_2NC$ was performed by stirring the reaction mixture at -78 °C to room temperature over 6 h.
- b) Axial cyanide : Equatorial cyanide = 73 : 27^{2c)} c) Axial cyanide : Equtorial cyanide = 69 : 31^{2c)}

This work was supported by the Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture.


References

 W. Nagata and M. Yoshioka, "Organic Reactions," Wiley (1979), Vol. 25, pp. 256 - 476.

2) a) D. A. Evans, L. K. Truesdale, and G. L. Carroll, J. Chem. Soc., Chem. Commun., <u>1973</u>, 55.
b) K. Utimoto, M. Obayashi, Y. Shishiyama, M. Inoue, and H. Nozaki, Tetrahedron Lett., <u>1978</u>, 3389.
c) R. Noyori, S. Murata, and M. Suzuki, Tetrahedron, <u>37</u>, 3899 (1981).

3) Y. Ito, H. Kato, H. Imai, and T. Saegusa, J. Am. Chem. Soc., <u>104</u>, 6449 (1982).

- 4) T. Mukaiyama, K. Watanabe, and M. Shiono, Chem. Lett., 1974, 1457.
- 5) β -(Trimethylsilyl)ethyl isocyanide was prepared by a reaction of α -lithiomethyl isocyanide with trimethylsilylmethyl chloride. [IR(neat) 2150, 1250, 840 cm⁻¹; NMR (CDCl₃) δ 0.07 (s, 9H), 1.02 (tt, 2H), 3.39 (tt, 2H)]
- 6) E. W. Colvin, "Silicon in Organic Synthesis," Butterworths (1981), pp. 15-20.
- 7) 6: IR (neat) 1735, 1105 cm⁻¹; NMR (CKCl₃) δ 0.8 2.2 (m, 10H), 3.44 (t, 2H), 4.11 (t, 2H)
- 8) Reaction of cyclohexanone ethylene acetal with methyl isocyanide— $TiCl_4$ system afforded spiro-N-methyliminolactone (7). 7 : IR (neat) 1680, 1105 cm⁻¹; NMR (CDCl₃) δ 1.0 - 2.0 (m, 10H), 2.75 (s, 3H), 3.6 - 4.2 (A₂B₂ m, 4H).

(Received March 30, 1984)