Tropospheric Degradation Products of Novel Hydrofluoropolyethers

ERNESTO C. TUAZON

Statewide Air Pollution Research Center, University of California, Riverside, California 92521

The CI atom-initiated photooxidations of the hydrofluoropolyethers (HFPEs) HCF2OCF2OCF2CF2OCF2H, HCF2OCF2CF2-OCF₂H, and HCF₂OCF₂OCF₂H in air produced C(O)F₂ as the only carbon-containing product, with observed average C(O)F₂ molar formation yields of 4.73, 3.77, and 2.82, respectively. The C(0)F₂ molar formation yields during the early stages of the reactions were observed to be closer to the number of C atoms in each parent HFPE. On the basis of current knowledge concerning the degradation pathways of hydrofluorocarbons and hydrochlorofluorocarbons, it is expected that C(O)F₂ will also be produced with near unit yield per C atom from the above HFPEs in the troposphere, where loss processes would be initiated primarily by reaction with OH radicals. The rate constants for reaction with the CI atom at 298 \pm 2 K were determined for the HFPEs by a relative rate method that employed CF₃CF₂H as the reference compound $[k(CI + CF_3CF_2H) = (2.4 \pm 0.5)]$ \times 10^{-16} cm^3 molecule^{-1} $s^{-1}],$ with measured values of (in units of 10⁻¹⁷ cm³ molecule⁻¹ s⁻¹) HCF₂OCF₂OCF₂CF₂-OCF₂H, 3.6 \pm 0.8; HCF₂OCF₂CF₂OCF₂H, 4.5 \pm 1.0; and HCF₂- OCF_2OCF_2H , 5.0 ± 1.1.

Introduction

Perfluorinated polyethers (PFPEs) are among the organofluorine compounds that have found important industrial applications. They are being employed as solvents, lubricants in both delicate and heavy machinery, components of coatings and a variety of polymer formulations, and contact fluids for thermal testing of electronic components (1). However, in response to environmental issues that encompass industrial halocarbons in general, including their possible contributions to stratospheric ozone depletion and global warming, perfluorinated ethers are also being redesigned to enhance their degradability in the lower atmosphere. Thus, for example, the polyethers $HCF_2O(CF_2CF_2O)_m(CF_2O)_nCF_2H$, where m =0-7 and n = 0-5, represent a group of novel hydrofluoropolyethers (HFPEs) being developed by Ausimont (2) as replacements for the PFPEs as well as for chlorofluorocarbons (CFCs). As for the hydrofluorocarbon (HFC) and hydrochlorofluorocarbon (HCFC) substitutes for the CFCs (which have been phased out of production in industrialized nations), the presence of one or more carbon-hydrogen bonds in the molecule enables the abstraction of hydrogen atoms by the OH radical to be the initial step that facilitates the degradation of these replacement compounds in the troposphere, thus minimizing their transport into the stratosphere (3).

To assess the environmental impact that may result in the event of their widespread use, a knowledge of the identities and yields of products from the atmospheric degradation reactions of the HFPEs is required. In this work, experiments were carried out to study the products generated from the alkoxy radicals formed after the initial H atom abstraction step from $HCF_2OCF_2OCF_2H$, $HCF_2OCF_2OCF_2H$, and HCF_2 -

 $OCF_2OCF_2CF_2OCF_2H$, since the predicted degradation pathway of this compound in the troposphere is by reaction with OH radicals. Because the rates of reaction of the OH radical with these halocarbons are generally very slow (*3, 4*), Cl atoms instead of OH radicals were employed for the initial H atom abstraction since they can be generated at higher concentration by Cl₂ photolysis. The rate constants for the reaction of Cl atoms with the above HFPEs were also measured in this work using a relative rate method.

Experimental Section

The irradiation experiments were carried out in a 5800-L evacuable, thermostated, Teflon-coated chamber equipped with a solar simulator that provided radiation from a 24-kW xenon arc lamp (5). The chamber housed an *in situ* multiple-reflection optical system interfaced to a Nicolet 7199 Fourier transform infrared (FT-IR) absorption spectrometer equipped with a liquid nitrogen-cooled HgCdTe detector.

The partial pressures of the HFPEs were measured into calibrated 2-L Pyrex bulbs with a capacitance manometer (MKS Baratron, 100-Torr sensor) and introduced into the chamber filled with the diluent air by flushing with N₂ gas. Chlorine was measured and introduced into the chamber both by the above procedure and by direct injection into the chamber with the use of gas-tight, all-glass 100-mL syringes (the latter procedure being used for the lesser quantities of chlorine employed during the earlier experiments). The initial concentrations (in units of 10¹³ molecule cm⁻³) employed were as follows: for the product studies, HFPEs, 4.8-7.2, and Cl₂, 94-485; for the relative rate experiments, HFPEs, 4.8-6.0, CF₃CF₂H, 7.2, and Cl₂, 360-480. An experiment for the infrared spectroscopic calibration of C(O)F₂ employed the photolysis in air of a mixture containing 9.6×10^{13} and 8.2 \times 10¹⁴ molecule cm⁻³, respectively, of CHClF₂ and Cl₂.

The experiments were conducted at 298 \pm 2 K and 740 Torr total pressure with irradiation times of 60–150 min. The reactants and products were monitored by FT-IR absorption spectroscopy, using a path length of 62.9 m and a full width at half-maximum resolution of 0.7 cm⁻¹.

The samples of HCF₂OCF₂OCF₂H, HCF₂OCF₂CF₂OCF₂H, and HCF₂OCF₂OCF₂CF₂OCF₂H were supplied by Ausimont. Cl₂ (99.9% minimum) and CHClF₂ (99.8% minimum) were from Matheson, and CF₃CF₂H (\geq 99.5%) was from E. I. du Pont de Nemours and Co., Inc. The diluent gas was synthetic air (20% O₂ + 80% N₂) made of M.O.S.-grade O₂ (99.995%, Liquid Carbonic) and head gas from liquid N₂ (Airco).

Results

Product Studies. $HCF_2OCF_2OCF_2CF_2OCF_2H$. A quantitative vapor-phase spectrum (700–1700 cm⁻¹) of the HCF₂OCF₂-OCF₂CF₂OCF₂H sample, along with those obtained for HCF₂-OCF₂CF₂OCF₂H and HCF₂OCF₂OCF₂H, is presented in Figure 1. The gas chromatographic analysis provided by Ausimont indicated a 95.24% purity for HCF₂OCF₂OCF₂CF₂OCF₂H, with the other sample constituents being 1.2% of a C₄ homolog and 3.4% of C₆ homologs. In the following, the concentrations and extent of reactions are reported first on the basis of a 100% pure C₅ sample and later discussed in terms of the above-measured composition.

Three irradiation experiments, each with 4.8×10^{13} molecule cm^{-3} initial concentration of the ether and $2.0\times10^{15},\ 3.6\times10^{15},\ and\ 4.8\times10^{15}$ molecule cm^{-3} of Cl_2 (runs EC-1628, EC-1629, and EC-1633, respectively), were carried out. The respective consumptions of HCF_2OCF_2OCF_2CF_2-OCF_2H at the end of the experiments were 6.7% after 141 min (EC-1628), 11.8% after 147 min (EC-1629), and 10.6% after 138 min (EC-1633).

FIGURE 1. Quantitative vapor-phase infrared spectra of HCF_2OCF_2 - $OCF_2CF_2OCF_2H$, $HCF_2OCF_2CF_2OCF_2H$, and $HCF_2OCF_2OCF_2H$.

Figure 2 shows the spectra of the initial HCF₂OCF₂OCF₂-CF2OCF2H-Cl2-air mixture and of the mixture after 138 min of irradiation during run EC-1633. $C(O)F_2$, HCl, and CO_2 were the reaction products observed. CO₂ was primarily generated from the organic impurities of the diluent air, as confirmed by similar CO₂ levels ($\sim 4 \times 10^{13}$ molecule cm⁻³) that were generated from a separate irradiation of a Cl₂-air mixture. HCl was directly produced from H atom abstraction by Cl atoms from HCF2OCF2OCF2CF2OCF2H and the organic impurities. $C(O)F_2$ was the only carbon-containing product observed from HCF2OCF2OCF2CF2OCF2H. An expanded plot of the product spectrum (Figure 2B) that focuses on the product $C(O)F_2$ is presented in Figure 3A. Subtraction of the absorptions by the reactant ether results in the residual spectrum of Figure 3B, which shows the well-defined absorption bands of $C(O)F_2$.

The reference spectrum of C(O)F₂ shown in Figure 3C was obtained from the irradiation of a CHF₂Cl–Cl₂–air mixture (run EC-1630), since it has been demonstrated previously that the Cl atom-initiated photooxidation of CHF₂Cl gave a 100% yield of C(O)F₂ (δ). An integrated absorption coefficient (base 10) of (2.94 \pm 0.01) \times 10⁻¹⁷ cm molecule⁻¹ for the carbonyl fluoride C=O stretch absorption band in the range 1870–1990 cm⁻¹ was obtained, with the error quoted being two times the least squares standard error. This absorption coefficient is 6.5% higher than the value measured previously (δ). The present value, which showed higher precision than

FIGURE 2. Infrared absorption spectra from an HCF₂OCF₂OCF₂CF₂-OCF₂H–Cl₂-air irradiation experiment (run EC-1633). (A) Initial HCF₂-OCF₂OCF₂OCF₂OCF₂CF₂OCF₂H (4.8 \times 10¹³ molecule cm⁻³). (B) Reaction mixture after 138 min of irradiation with 10.6% of HCF₂OCF₂OCF₂CF₂OCF₂H consumed.

FIGURE 3. (A) Spectrum from run EC-1633 reaction mixture after 138 min of irradiation (same as Figure 2B). (B) From (A) after subtraction of absorptions by $HCF_2OCF_2OCF_2OCF_2H$. (C) C(0)F₂ reference spectrum. Numbers in parentheses are concentrations in molecule cm⁻³.

the earlier measurement and which was obtained under the same experimental conditions (e.g., radiation intensity, path length, use of the same manometers and calibrated glass bulbs) as those for the HFPEs, was employed in the calculation of the $C(O)F_2$ product concentrations in this study.

By subtracting the reference spectrum (Figure 3C) from the product spectra (such as Figure 3B), it was verified that no other product species contributed any measurable signal to the C=O stretching region. Thus, from the known absorption coefficient and the integrated band areas (1870– 1990 cm⁻¹range), the concentrations of C(O)F₂ formed during the HCF₂OCF₂OCF₂CF₂OCF₂H-Cl₂-air irradiations were determined.

FIGURE 4. $C(0)F_2$ yield data from CI atom-initiated photooxidation of HCF₂OCF₂OCF₂CF₂OCF₂H (top plot), HCF₂OCF₂CF₂OCF₂H (middle plot), and HCF₂OCF₂OCF₂H (bottom plot). Distinct symbols for each plot represent separate irradiation experiments.

The plots of $C(O)F_2$ yields ($[C(O)F_2]$ formed/ $[HCF_2OCF_2-OCF_2CF_2OCF_2H]$ reacted) vs amounts of ether consumed for the three experiments (EC-1628, EC-1629, and EC-1633) are presented in Figure 4 (top plot). An average $C(O)F_2$ yield of 4.73 was calculated from the three experiments. However, yield values approaching 5.0 are suggested by the data for the earlier part of these irradiations.

The above yields have been provisionally reported on the basis of a 100% pure sample, since the infrared spectral features of the C4 and C6 constituents and their changes during the reactions could not be detected or distinguished from those of HCF₂OCF₂OCF₂CF₂OCF₂H and since they are all expected to yield $C(O)F_2$ as the sole or major carboncontaining product. As shown below, the rate constant for reaction of HCF₂OCF₂CF₂OCF₂H with the Cl atom is not vastly different from that of HCF2OCF2OCF2CF2OCF2H, and it is reasonable to assume that, by virtue of similar environments for the H atoms, the rate constants for the C₆ species are not too dissimilar also from that of the C₅ species. Hence, if all the carbon units of these compounds are converted to C(O)-F₂, it is expected that '1 mol of the sample' with the C_4-C_6 composition given above would yield 5.014 mol of $C(O)F_{2}$, with 95.0% contribution from HCF₂OCF₂OCF₂CF₂OCF₂H. The experimental data are consistent with these expected results.

 $HCF_2OCF_2CF_2OCF_2H$. The sample of $HCF_2OCF_2CF_2OCF_2H$ (infrared spectrum shown in Figure 1) had a cited analysis of 98.63%. The two irradiation experiments (EC-1632 and EC-1634) for $HCF_2OCF_2CF_2OCF_2H$ each employed initial concentrations of 4.80×10^{13} molecule cm⁻³ of the ether and 4.8×10^{15} molecule cm⁻³ of Cl₂, with 10–11% consumption of the ether being observed after ~120 min of photolysis. As in the case of the C₅ ether above, the infrared spectra of the reaction mixtures showed C(O)F₂ to be the only carboncontaining product from $HCF_2OCF_2CF_2OCF_2H$. The results of the above experiments, plotted in Figure 4 (middle plot), correspond to an average C(O)F₂ yield of 3.77, with yields closer to 4.0 being suggested by the data for the earlier part of each irradiation.

 $HCF_2OCF_2OCF_2H$. The sample of $HCF_2OCF_2OCF_2H$ (infrared spectrum shown in Figure 1) was quoted with a purity of 99.62%. The two of irradiation runs (EC-1631 and EC-1635) for $HCF_2OCF_2OCF_2H$ each employed 7.2×10^{13} molecule

FIGURE 5. Plots of eq I for the reactions of CI atoms with HCF₂-OCF₂OCF₂CF₂OCF₂H, HCF₂OCF₂CF₂OCF₂H, and HCF₂OCF₂OCF₂H with CF₃-CF₂H as reference. The ordinates of the plots for HCF₂OCF₂CF₂OCF₂H and HCF₂OCF₂OCF₂H are offset by +0.05 and +0.10, respectively, for clarity.

TABLE 1. Relative Rate Data for Reactions of Hydrofluoropolyethers with Cl Atoms at 298 \pm 2 K

sample	ref	$(k_1/k_2)^a$	$\begin{array}{c} 10^{17} \times \textit{k}_1 \text{ (cm}^3 \\ \text{molecule}^{-1} \\ \text{s}^{-1} \text{)}^{\textit{b}} \end{array}$
HCF ₂ OCF ₂ OCF ₂ CF ₂ OCF ₂ H HCF ₂ OCF ₂ CF ₂ OCF ₂ H HCF ₂ OCF ₂ OCF ₂ H	CF_3CF_2H CF_3CF_2H CF_3CF_2H	$\begin{array}{c} 0.149 \pm 0.003 \\ 0.188 \pm 0.004 \\ 0.208 \pm 0.006 \end{array}$	$\begin{array}{c} 3.6 \pm 0.8 \\ 4.5 \pm 1.0 \\ 5.0 \pm 1.1 \end{array}$

^{*a*} The random errors quoted for k_1/k_2 are two times the least squares standard errors. The total of other possible errors (including systematic errors) is estimated to be $\leq 5\%$. ^{*b*} Placed on an absolute basis by use of a rate constant for reaction of the Cl atom with CF₃CF₂H of $k_2 = (2.4 \pm 0.5) \times 10^{-16}$ cm³ molecule⁻¹ s⁻¹ at 298 ± 2 K (7). The errors indicated include the uncertainty in k_2 (CF₃CF₂H) and the total errors in k_1/k_2 .

cm⁻³ of the ether and 3.6×10^{15} (EC-1631) and 4.8×10^{15} (EC-1635) molecule cm⁻³ of Cl₂, with respective ether consumptions of 10.3% after 111 min and 11.3% after 138 min of irradiation. The infrared spectra of the reaction mixtures showed C(O)F₂ as the only carbon-bearing product from the reactant ether. An average C(O)F₂ yield of 2.82 was obtained, and the plot of the yield data is included in Figure 4 (bottom plot).

Kinetic Studies. On the assumption that the only important loss processes occurring for the sample (S) and reference (R) compounds are their reactions with Cl atoms

$$S + Cl \rightarrow products$$
 (1)

$$\mathbf{R} + \mathbf{Cl} \rightarrow \mathbf{products} \tag{2}$$

it can be shown that

$$\ln \{ [S]_{t} / [S]_{t} \} = (k_{1} / k_{2}) \ln \{ [R]_{t} / [R]_{t} \}$$
(I)

where $[S]_t$ and $[R]_t$ are the sample and reference compound concentrations, respectively, at time *t*; $[S]_{t_0}$ and $[R]_{t_0}$ are the concentrations of sample and reference at time t_0 ; and k_1 and k_2 are the rate constants for reactions 1 and 2, respectively.

The plots of eq I for the irradiation of air mixtures containing Cl_2 , CF_3CF_2H as the reference compound, and each of the HFPEs HCF₂OCF₂OCF₂CCF₂OCF₂H (runs EC-1642) and EC-1643), HCF₂OCF₂CF₂OCF₂H (run EC-1644), and HCF₂-

FIGURE 6. Tropospheric degradation scheme for HCF2OCF2OCF2CF2OCF2H.

OCF₂OCF₂H (run EC-1645) are presented in Figure 5. The plots are seen to be straight lines with excellent linear regression statistics ($r^2 \ge 0.998$). The slopes (which are equal to the rate constant ratios k_1/k_2) of 0.208 \pm 0.006, 0.188 \pm 0.004, and 0.149 \pm 0.003 for the C₃, C₄, and C₅ HFPEs, respectively, indicate that these fluorinated ethers are even less reactive to Cl atoms than CF₃CF₂H is, the latter compound having the lowest rate constant for reaction with the Cl atom among a series of HCFCs and HFCs previously studied in this laboratory (7). The absolute values of the rate constants k_1 for reaction of Cl atoms with the fluorinated ethers were calculated based on the value $k_2 = (2.4 \pm 0.5) \times 10^{-16}$ cm³ molecule⁻¹ s⁻¹ for the CF₃CF₂H + Cl reaction (7) and are summarized in Table 1.

Discussion

The results described above for the Cl atom-initiated photooxidations of the HFPEs are consistent with the generally accepted reactions of hydrocarbons and halogenated hydrocarbons that follow the initial H atom abstraction step (3, 4). The series of equations involved in the HFPE laboratory reaction systems is illustrated for HCF₂OCF₂OCF₂CF₂OCF₂H:

 $\begin{array}{c} HCF_2OCF_2OCF_2CF_2OCF_2H + \\ \dot{C}l \rightarrow HCF_2OCF_2OCF_2CF_2O\dot{C}F_2 + HCl \ (3) \end{array}$

$$\begin{array}{c} HCF_2OCF_2OCF_2CF_2O\dot{C}F_2 + \\ O_2 \rightarrow HCF_2OCF_2OCF_2CF_2O\dot{C}F_2O\dot{O} \end{array} (4) \end{array}$$

$$\begin{array}{c} 2HCF_2OCF_2OCF_2OCF_2O\dot{O} \rightarrow \\ 2HCF_2OCF_2OCF_2OCF_2OCF_2\dot{O} + O_2 \end{array} (5) \end{array}$$

$$HCF_{2}OCF_{2}OCF_{2}CF_{2}OCF_{2}\dot{O} \xrightarrow{-C(O)F_{2}} HCF_{2}OCF_{2}OCF_{2}CF_{2}\dot{O} \xrightarrow{-C(O)F_{2}} HCF_{2}OCF_{2}O\dot{C}F_{2}\dot{O} \xrightarrow{-C(O)F_{2}} HCF_{2}OCF_{2}\dot{O} \xrightarrow{-C(O)F_{2}} HCF_{2}OCF_{2}\dot{O} \xrightarrow{-C(O)F_{2}} HCF_{2}\dot{O} \xrightarrow{-C$$

Reaction with Cl atoms yields HCl and the halogenated radical, which then reacts with O_2 to give the peroxy radical (\dot{RO}_2). Under the laboratory conditions employed, the major fate of the \dot{RO}_2 radical is self-reaction to produce the corresponding alkoxy radical (\dot{RO}). The \dot{RO} radical then undergoes a sequence of decomposition steps and reaction with O_2 , as depicted in eq 6, to give the theoretical yield of 5 molecules of $C(O)F_2$ per molecule of $HCF_2OCF_2OCF_2CF_2$ -OCF₂H reacted.

Although the $RO_2 + RO_2$ reaction (eq 5) is expected to predominantly yield RO radicals, the occurrence of minor channels yielding other products, such as those enumerated below, cannot be totally ruled out in the present reaction systems:

$$\begin{array}{l} HCF_2OCF_2OCF_2CF_2OCF_2OOO + \\ HO_2 \rightarrow HCF_2OCF_2OCF_2OCF_2OOH + O_2 \end{array} (9) \end{array}$$

$$\begin{array}{c} HCF_2OCF_2OCF_2O\dot{O} + H\dot{O}_2 \rightarrow \\ HCF_2OCF_2OCF_2OOH + O_2 \end{array} (10) \end{array}$$

It is to be noted that HCF₂OCF₂OCF₂OO is an intermediate peroxy radical formed during the decomposition of the C₅ alkoxy radical in eq 6. Minor amounts of these peroxide products that could form via eqs 7-10 would not be detectable beneath the strong absorption bands of the parent ether. The formation of small yields of these peroxides under laboratory conditions could have contributed to the observation of C(O)-F₂ yields that were slightly lower than the theoretical 5.0 molar yield for the HCF₂OCF₂OCF₂CF₂OCF₂H reaction. The same reasoning applies to the cases of HCF₂OCF₂OCF₂H and HCF₂- $OCF_2CF_2OCF_2H$, where reactions analogous to those for the C_5 homolog can be written and where the observed $C(O)F_2$ yields were also slightly lower than the respective 3.0 and 4.0 theoretical yields. However, the peroxidic bond is susceptible to UV photolysis, such that the above-mentioned peroxide products, if formed in the atmosphere, are expected to yield back alkoxy radicals.

As in the case of the HFCs and HCFCs, the dominant loss process for the HFPEs in the troposphere is expected to be reaction with the OH radical, leading to the formation of RO₂ radicals. Unlike in the laboratory reaction systems, however, the prevailing RO₂ radical concentrations will be much lower in the atmosphere such that self-reaction (eq 5) will be unimportant. Instead, the fate of peroxy radicals will be reactions with NO, NO₂, and HO₂ radicals. A tropospheric degradation scheme for HCF₂OCF₂OCF₂CF₂OCF₂Ĥ, which is heavily based on current knowledge of the degradation pathways of HFCs and HCFCs (3, 4), is presented in Figure 6. Both the RO₂ reactions with NO and NO₂ will be fairly rapid, with the NO reaction leading to the alkoxy radical and the sequence of bond scissions producing the main product $C(O)F_2$. The reaction with NO₂ is an equilibrium leading to the production of a thermally unstable peroxynitrate. The rate of reaction with HO2 radicals is relatively more uncertain (8), but the resulting hydroperoxide product is expected to

undergo photolysis and reaction with OH radicals. As illustrated in Figure 6, these reactions of the hydroperoxide and the thermal decomposition of the peroxynitrate largely return the C_5 fragment to the RO_x pool. Hence, in time, the OH radical-initiated decomposition of HCF₂OCF₂OCF₂OCF₂CF₂-OCF₂H in the atmosphere will produce C(O)F₂ with the expected molar yield of 5.0.

The values of the rate constants for reaction of the C_3-C_5 HFPEs with Cl atoms measured in this work indicate that the terminal C–H bonds of these compounds are stronger than that of the highly fluorinated CF₃CF₂H with respect to H atom abstraction by the Cl atom. However, for the more atmospherically relevant reactions with the OH radical, the tentative range of OH rate constants for these C_3-C_5 HFPEs appear to be comparable or higher than the OH rate constant for CF₃-CF₂H (*9, 10*). A quantitative assessment of the atmospheric lifetimes of the above HFPEs is still ongoing (*9*).

Acknowledgments

The author gratefully acknowledges financial support from Ausimont, helpful discussions with Dr. Daniel Chung (Ausimont USA, Inc.) and Dr. Mario Visca (Ausimont CRS Bollate), and valuable suggestions by Prof. Roger Atkinson.

Literature Cited

- Sianesi, D.; Marchionni, G.; De Pasquale, R. J. In Organofluorine Chemistry: Principles and Commercial Applications; Banks, R. E., Ed.; Plenum Press: New York, 1994; pp 431–461.
- (2) Marchionni, G.; Spataro, F.; Strepparola, E. European Patent 695,775, 1996.
- (3) Step-Halocside/AFEAS Workshop. Kinetics and Mechanisms for the Reactions of Halogenated Organic Compounds in the Troposphere; University College: Dublin, Ireland, March 23– 25, 1993.
- (4) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, R. F., Jr.; Kerr, J. A.; Rossi, M. J.; Troe, J. J. Phys. Chem. Ref. Data In press.
- (5) Winer, A. M.; Graham, R. A.; Doyle, G. J.; Bekowies, P. J.; McAfee, J. M.; Pitts, J. N., Jr. In Advances in Environmental Science and Technology; John Wiley and Sons: New York, 1980; Vol. 10, pp 461–511.
- (6) Tuazon, E. C.; Atkinson, R. J. Atmos. Chem. 1993, 17, 179-199.
- (7) Tuazon, E. C.; Atkinson, R.; Corchnoy, S. B. Int. J. Chem. Kinet. 1992, 24, 639–648.
- (8) Wallington, T. J.; Schneider, W. F.; Nielsen, O. J.; Sehested, J.; Worsnop, D. R.; Bruyn, W. J.; Shorter, J. A. In *Halon Replacements: Technology and Science*; Miziolek, A. M., Tsang, W., Eds.; ACS Symposium Series 611; American Chemical Society: Washington, DC, 1995; pp 16–30.
- (9) Visca, M.; Silvani, R.; Marchionni, G. Chemtech 1997, 27 (2), 33-37.
- (10) DeMore, W. B. Private communication, 1996.

Received for review December 5, 1996. Revised manuscript received February 19, 1997. Accepted February 24, 1997.®

ES961010W

[®] Abstract published in Advance ACS Abstracts, May 1, 1997.