Synthesis of β -Lactams using a New Phosphorylating Agent¹, Phenyl N-Methyl-N-phenylphosphoramidochloridate

D.R. Shridhar*, Bhagat Ram, V. Lakshmi Narayana, Alok K. Awasthi, G. Jagath Reddy

Chemistry Division, IDPL Research Centre, Indian Drugs & Pharmaceuticals Limited, Hyderabad - 500037 (A.P.), India

The discovery of nocardicins and monobactams has attracted the increased attention of scientists towards the synthesis of monocyclic β -lactams. Although several methods²⁻⁵ are already known for the annellation of imines and substituted acetic acids to construct β -lactams, there is still a need to find new mild methods. Various phosphorylating agents^{6.7,8} which form reactive mixed anhydride-type of intermediates with carboxylic acids have been used for the synthesis of β -lactams. Recently phenyl N-phenylphosphoramidochloridate (1; R = H) and phenyl N-methyl-N-phenylphosphoramidochloridate (1; R = CH₃) have been reported to give good yields of carboxamides and anhydrides. Compound 1 (R = H), however, has been reported to give better yields of amides than phenyl N-methyl-N-phenylphosphoramidochloridate (1; R = CH₃).

We now report the use of phenyl N-methyl-Nphenylphosphoramidochloridate (1; $R = CH_3$) in a new mild method for the conversion of imines to α -substituted- β lactams. Phenyl N-phenylphosphoramidochloridate (1; R = H), however failed to give β -lactams under varied conditions. The failure of the β -lactam formation by the reagent 1 (R = H) can be attributed to the excess triethylamine, required for the synthesis of β -lactams in the presence of a less nucleophilic imine 4, which is detrimental to the mixed anhydride 3. This was confirmed by a separate experiment where the use of 1 mol of triethylamine gave expected yields of carboxamide 9 with aniline (Scheme A), whereas the mixed anhydride 3, when stirred with excess triethylamine overnight and then treated with aniline, gave no carboxamide. However, a solid (m.p. 133-135°C) was isolated from the aqueous extract after acidification with mineral acid, which corresponds to phenyl N-phenylphosphoramidic acid (m.p. 134-136°C)10.

In the present one-pot reaction, a mixture of reagent 1, $(R = CH_3)$ substituted acetic acid 2, triethylamine, and imine 4 is stirred at room temperature overnight to give the β -lactams 6 and 8 in good yields (Table). The possible reaction pathway for the β -lactam formation is shown in Scheme A.

Table. β -Lactams 6a-h and 8a,b prepared

Product No. R ¹	R ²	R ³		" m.p. [°C]	Molecular Formula ^b or Lit. m.p. [°C]	I.R. (Nujol) ^c v [cm ¹]	¹H-N.M.R. (CDCl ₃) ^d δ [ppm]
6a	\(\)	cı – 🦳 –	66	215°	219 ^{-> 4}	1770, 1750, 1710	5.55 (d, 1H, J=1.5 Hz); 5.65 (d, 1H, J=1.5 Hz);
6b \(\bigcirc_0-\)	H ₃ CO —	CI-	60	234°	C ₂₂ H ₁₈ ClNO ₃ (379.5)	1740	7.3–8.2 (m, 13 H) 3.85 (s, 3H); 5.50 (d, 1H, $J = 5$ Hz); 5.75 (d, 1H, $J = 5$
6c	H ₃ CO-	CI—	78	195°	C ₂₄ H ₁₇ CIN ₂ O ₄ (432.5)	1760, 1750, 1710	Hz); 6.7–7.4 (m, 13H) 3.78 (s, 3H); 5.25 (d, 1H, <i>J</i> = 1.5 Hz); 5.35 (d, 1H, <i>J</i> = 1.5 Hz); 6.8–7.9 (m, 12H)
6d \(\bigcap_CH_2-C)- \	C1 - ()-	44	153–154°	156158° 4	1745	4.30 (q, 2 H, $J = 11$ Hz); 5.00 (d, 1 H, $J = 5$ Hz); 5.20 (d, 1 H, $J = 5$ Hz); 7.0-7.5 (m, 14 H)
6e	CH₂-0-	- cı-<->	26	232°	$C_{28}H_{22}CINO_3$ (455.3)	1730	e ′
6 f \(\bigcirc_{-0-} \)	<u></u>	CI —	46	268°	269°4	1730	e
6g N-		C ₂ H ₅ OOC — CH ₂ —	- 76	144146°	oil ¹¹	1780, 1760, 1715	1.13 (t, 3H); 4.07 (q, 2H); 3.57, 4.21 (2d, 2H, N—CH ₂ —COO); 5.10 (d, 1H, <i>J</i> = 1.5 Hz); 5.18 (d, 1H, <i>J</i> = 1.5 Hz); 7.1–7.9 (m, 9H)
6h see Scheme A			41	273°	$C_{22}H_{20}N_2O_3$ (360.4)	1775, 1745, 1715	0.9-2.15 (m, 10 H); 5.04 (s, 1H); 7.1-7.9 (m, 9 H)
8a see Scheme A			41	105°	$C_{23}H_{19}NO_2$ (341.4)	1730	3.40 (m, 2H); 4.30 (m, 2H); 6.06 (s, 1H); 7.3–8.0 (m, 14H)
8b see Scheme	e A		70	273°	273°4	1770, 1750, 1710	2.70 (m, 2H); 3.7 (m, 2H); 5.5 (s, 1H); 7.9 (m, 13H)

^a Yield of pure, crystallised product based on 4.

^b The micro analyses of the new compounds were in satisfactory agreement with the calculated values (C ± 0.38 , H ± 0.40 , N ± 0.49 except 6h C ± 0.62).

Recorded on a Perkin-Elmer model 298 spectrometer.

d ¹H-N.M.R. measured at 90 MHz on Varian A-90 (EM-390) spectrometer using TMS as an internal standard.

Insufficiently soluble.

$$\begin{bmatrix} C_{6}H_{5}O & O & CH_{2}-R^{1} \\ I & II & O \\ C_{6}H_{5} & CH_{3} \end{bmatrix}$$

$$R^1$$
 R^1
 R^1
 R^2
 R^3
 R^4
 R^4
 R^4

8a
$$R^1 = 0$$

6h $R^1 = 1$

0

6

Scheme A

The structures of 6 and 8, thus obtained, were confirmed by microanalyses, I. R. and ${}^{1}H$ -N.M.R. spectroscopy. The configuration of C-3 and C-4 protons in **6** was determined by ¹H-N.M.R. and was found to be cis(J = 5 Hz) in all the β lactams except in case of α -phthalimido- β -lactams which had trans (J = 1.5 Hz) disposition of these protons.

Phenyl N-methyl-N-phenylphosphoramidochloridate (1; R = CH₃) as a condensing agent works under mild conditions and gives yields comparable to those reported by earlier methods for the synthesis of β -lactams.

β-Lactams 6 and 8; General Procedure:

A mixture of carboxylic acid 2 (0.01 mol), triethylamine (0.011 mol), dichloromethane (100 ml), and reagent 1 (0.011 mol) is stirred for 30 min at 10-15°C under nitrogen followed by the slow addition of a solution of imine 4 (0.01 mol) and triethylamine (0.02 mol) in dry dichloromethane (50 ml). The mixture is stirred at room temperature overnight, washed with water (3 × 50 ml), aqueous sodium hydrogen carbonate (50 ml) and finally with water (50 ml). The organic phase is dried with sodium sulphate and passed over a Florisil column. Evaporation of the solvent and recrystallisation from dichloromethane/hexane affords the pure β -lactam.

The authors thank the staff of the analytical laboratories of this Centre for spectral and elemental analyses.

> Received: September 29, 1983 (Revised form: April 25, 1984)

- Communication No. 70 from IDPL Research Centre, Hyderabad, India.
- A.K. Mukerjee, Tetrahedron 34, 1731 (1978).
- ³ H.H. Wasserman, B.H. Lipshuts, A.W. Tremper, J.S. Wu; J. Org. Chem. 46, 2991 (1981).
- A.K. Bose, M.S. Manhas, R.M. Ramer, Tetrahedron 21, 449 (1965).
- M. Mivake, N. Tokutake, M. Kirisawa, Synthesis 1983, 833; This work was published subsequent to the submission of our original manuscript.
- ⁶ D. R. Shridhar, B. Ram, V.L. Narayana, Synthesis 1982, 63.
- M. Miyake, M. Kirisawa, M. Tokutake, Synthesis 1982, 1053.
- A. Arrieta, J.M. Aizpurua and C. Palomo, Synth. Commun. 12, 967 (1982).
- R. Mestres, C. Paloma, Synthesis 1982, 288.
 R. Mestres, C. Palomo, Synthesis 1981, 218.
- ¹¹ K. Tetsuji, Y. Shuichi, S. Yuichi, A. Sinko, F. Keuchiro, S. Fumio, Heterocycles 12, 405 (1979).