SYNTHESIS OF N-SUCCINIMIDYL-2,4-DIMETHOXY-3-(TRI-<u>N</u>-BUTYLSTANNYL) BENZOATE <u>VIA</u> REGIO-SPECIFICALLY GENERATED LITHIUM 2,4-DIMETHOXY-3-LITHIOBENZOATE

Acharan S. Narula and Michael R. Zalutsky

Box 3808, Department of Radiology Duke University Medical Center Durham, NC 27710

Summary: Lithium 2,4-dimethoxy-3-lithiobenzoate can be efficiently generated from 2,4-dimethoxy-3-bromobenzoic acid in THF at -100° C.

In connection with a research project aimed at the synthesis of novel radiohalogenated organic conjugates for use in protein labeling, we required a regio-specific synthesis of N-succinimidy1-2,4-dimethoxy-3-(tri-<u>n</u>-butylstannyl)benzoate ($\underline{1}$, R = OCH₃). Because we have recently shown¹ that N-succinimidy1-3-(tri-<u>n</u>-butylstannyl)benzoate ($\underline{1}$, R = H) can be obtained via lithium m-lithiobenzoate ($\underline{2}$, R = H), it is, therefore, conceivable that synthesis of $\underline{1}$ (R = OCH₃) may rely on a suitable method for the generation² of lithium 2,4-dimethoxy-3-lithiobenzoate ($\underline{2}$, R = OCH₃). This has now been accomplished, and the results discussed

in this communication are noted in order to underline the importance of this work towards the regio-specific introduction of a halogen, e.g. Br or I, at Position 3 of 2-hydroxy-4methoxybenzaldehyde ($\underline{4}$). While we now have ready access to multigram quantitites of 3-bromo-2,4-dimethoxybenzoic acid, the true merit of our strategy is that it offers a general method for the synthesis of 1,2,3,4-substituted aromatic substrates where carbon 1 contains an electron withdrawing group (e.g. COOH), carbon 2 and 4 contain an electron donating group (e.g. OCH₃) and carbon 3 contains a halogen (e.g. Br or I). Synthesis of N-succinimidy1-2,4-dimethoxy-3-(tri-n-buty1stanny1)benzoate $(1, R = OCH_3)$ via lithium-2,4-dimethoxy-3-lithiobenzoate $(2, R = OCH_3)$

In view of the fact³ that lithium 2,6-dimethoxybenzene can be readily prepared by metallation of 1,3-dimethoxybenzene with <u>n</u>-butyl lithium, one is likely to be tempted to generate $2(R = 0CH_3)$ starting from the commercially available 2,4-dimethoxybenzoic acid. An inherent problem with this approach, however, is that the kinetics of metallation at C3-H are incompatible with the -COOH functionality in 2,4-dimethoxybenzoic acid. Since metal-halogen exchange can be effectively carried out at $-100^{\circ}C$ without substantial interference with the -COOH functionality (e.g. $2 \Rightarrow 3$; R = H); for our objective at hand, i.e. generation of $2(R = 0CH_3)$, we required 2,4-dimethoxy-3-bromobenzoic acid (3, $R = 0CH_3$). A four-step regio-specific synthesis of 2,4-dimethoxy-3-bromobenzoic acid starting from the readily available 2-hydroxy-4-methoxybenzaldehyde (4) is outlined below⁴ (Fig. 1). The choice of 2-hydroxy-4-methoxybenzaldehyde as a starting material was dictated by the following considerations: (i) Position 1 contains an aldehydic function which can be readily converted

Figure 1: Synthesis of N-Succinimidy1-2,4-dimethoxy-3-(Tri-n-buty1stanny1)Benzoate (1)

to a COOH group; and (ii) Position 2 contains an OH group which can offer co-ordination to a Hg^{++} salt and, therefore, can be expected to direct the electrophilic reagent [e.g. $Hg(OAc)_{2}$] to the ortho position.⁵

Indeed, treatment of 2-hydroxy-4-methoxybenzaldehyde with mercuric acetate in refluxing alcohol containing \sim 1% acetic acid followed by treatment with aq. NaBr gave in over 85% yield a 6:1 mixture of organo-mercury compounds 5 and 6 m.p. ~ 200°C, [¹H-NMR: (300 MHz CDCl₂, 5): compound 5: 3,90 (s. 3H, C4-OCH₂), 6.70 and 7.55 (pair of doublets, Jab = 8Hz, C5-H and C6-H), 9.80 (s. 1H, HC=0) and 11.33 (s. 1H, Ø-OH); compound 6: 3.80 (s. 3H, C4-OCH₂), 6.50 (s. 1H, C3-H), 7.46 (s. 1H, C6-H), 9.70 (s. 1H, HC=O) and 11.64 (s. 1H, Ø--OH).] The ratio of two compounds from this reaction was obtained from the integration of the phenolic and aldehydic signals assigned above. Treatment of the above mixture of organo-mercury compounds (5 and 6) with 1 equivalent of bromine in CHCl₂ containing a small amount of acetic acid gave, after usual work-up and purification over silica gel (elution with 30% EtOAc in hexane), in \sim 56% yield the pure 3-bromo-2-hydroxy-4-methoxybenzaldehyde (7), m.p. 115-117°C [¹H-NMR: (300 MHz, CDCl₃, δ): 4.0 (s, 3H, C4-0<u>CH₃</u>), 6.50 and 7.52 (pair of doublets. Jab = 8Hz, C5-H and C6-H), 9.75 (1H, s, HC=O), 11.96 (1H, s, Ø - OH). Mass: m/e 230, 232 CoH-O3Br (M⁺, 88.8%, 86.9%). Methylation of the phenolic OH in <u>7</u> with MeI/K₂CO₂, proceeded readily to give 3-bromo-2,4-dimethoxybenzaldehyde (8), m.p. 80° [¹H-NMR: (300MHz, CDCl₂, ξ): 4.0 (s, 2 x 3H, C2 and C4 - 0<u>CH₃</u>), 6.82 and 7.84 (pair of doublets, Jab = 8Hz, C5-H and C6-H), 10.30 (s, 1H, <u>H</u>C=0. Mass: m/e 244, 246 $(C_0H_0O_3Br (M^+, 63.3\%, 61.5\%)$. Jones oxidation of <u>8</u> gave in 83% yield 2,4-dimethoxy-3-bromobenzoic acid [3, R = OCH₃; m.p. 175-177^oC; ¹H-NMR (300 MHz, CDCl₃, **5**): 4.0 & 4.04 (s, 2 x 3H, C2 and C4 OCH3), 6.83 and 8.81 (pair of doublets, Jab = 8Hz, C5-H & C6-H), 10.8 (bs, 1H, COOH); Mass: m/e 260, 262 CoHoOLBr (M⁺, 100%, 97.3%).

Treatment of $\underline{3}(R = 0CH_3)$ with 2.2 eq. of <u>n</u>-BuLi in THF at $-100^{\circ}C$ under argon, followed by warming to $-80^{\circ}C$ for 30 min generated the desired dilithio-anion $\underline{2}(R = 0CH_3)$, which was quenched with ~ 2.5 eq. of tri-<u>n</u>-butyl tin chloride. The desired tri-<u>n</u>-butylstannyl-2,4-dimethoxy-3(tri-<u>n</u>-butylstannyl)benzoate (<u>9</u>) was isolated from the neutral fractions by silica gel chromatography (eluant: 10% ether in CHCl₃, yield ~ 45%). Because of the labile nature of the tri-<u>n</u>-butyl tin ester, this product was directly converted to N-succinimidyl-2,4-dimethoxy-3-(tri-<u>n</u>-butylstannyl)benzoate <u>1</u>, R = 0CH₃), essentially in the same manner as described previously for the synthesis of N-succinimidyl-3-(tri-<u>n</u>-butylstannyl) benzoate (1, R = H). The assigned structure for <u>1</u> (R = 0CH₃) was in full agreement with its spectral data: ¹H-NMR: (300 MHz, CDCl₃, δ); 0.90-1.48 (typical m, 27H, 3 x n-C₄H₉); 2.91 (s, 4H, -CO-C<u>H</u>₂-C<u>H</u>₂-CO); 3.76 (s, 3H, 0<u>C</u>H₃); 3.88 (s, 3H, 0C<u>H</u>₃); 6.66 and 8.12 (pair of doublets, Jab = 8Hz, C5-H & C6-H). FAB-Mass: m/e 512 [(C₂₅H₃₉O₆Sn) - (C₄H₉)] (M⁺ - 57, 40%), 455 (M⁺ - C₄H₄NO₃, 66%), 285 [(455 - 3 x C₄H₉) + H, 32%], 165 [(285 - Sn), 100%]. The efficiency of our procedure to generate lithium 2,4-dimethoxy-3-lithiobenzoate is appealing and, in order to further enhance the synthetic utility of this reagent, we are currently investigating its reaction with several different types of electrophiles.

Acknowledgements

This work was supported in part by a contract from Abbott Laboratories, Chicago, IL, and NCI Grant No. CA42324. The authors wish to thank Betsy Von Biberstein and Sarah Caldwell for excellent technical assistance.

References

- 1. M.R. Zalutsky and A.S. Narula, Appl. Radiat. Isot. 38, 1051 (1987).
- For a recent review concerning the generation of aromatic organolithium reagents bearing electrophilic group: Preparation by halogen-lithium exchange; see W.E. Parham and C. Bradsher, <u>Acc. Chem. Res.</u> <u>15</u>, 300 (1982).
- D.A. Shirley, J.R. Johnson, Jr., and J.P. Hendrix, <u>J. Organometal. Chem.</u> <u>11</u>, 209 (1968): Although hetroatom-facilitated <u>ortho</u>- and <u>alpha</u>-lithiations are now routinely employed in organic synthesis [for some recent reviews see P. Beak and A. I. Meyers, <u>Acc. Chem. Res.</u>, <u>19</u>, 356 (1986); N. S. Narasimhan and R. S. Mali, in <u>Topics for Current Chemistry</u>, Vol. <u>138</u>, 63 (1987), Springer-Verlag, New York], this strategy could not be applied to the synthesis of the title compound.
- Although 2,4-dimethoxy-3-bromo-benzoic acid is a relatively simple aromatic substrate, its synthesis has not been reported in the literature. However, we do note that a 1:1 mixture of methyl-5-bromo-2-hydroxy-4-methoxybenzoate and methyl-3-bromo-2-hydroxy-4-methoxybenzoate can be obtained <u>via</u> bromination <u>ortho</u> to the phenol hydroxy group of methyl-2-hydroxy-4-methoxybenzoate in the presence of TiCl₄. T.M. Gresp, M.V. Sargent, J.A. Elix and D.P.H. Murphy, <u>J. Chem. Soc. Perkin I</u>, 340 (1973).
- J.M. Swann and D.St.C. Black, in <u>Organometallics in Organic Synthesis</u>. Chapman and Hall, London. p. 114 (1974).

(Received in USA 3 June 1988)