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Abstract: The reaction of indole derivatives bearing a 3- or 4-hy-
droxyalkyl chain with dimethyl sulfoxide and oxalyl chloride under
Swern conditions led to a one-pot process involving three different
synthetic transformations, namely oxidation of indole to oxindole,
introduction of a chlorine substituent at the oxindole C-3 position,
and substitution of the hydroxyl group in the side chain by chlorine.
In spite of its mechanistic complexity, this synthetically useful pro-
cess proceeded in good to excellent overall yield.

Key words: indoles, Swern reaction, oxindole synthesis, halogena-
tion, oxidation

The oxindole moiety is present in large number of com-
pounds with pharmaceutical interest, including growth
hormone secretagogues,1 Pgp-450-mediated MDR inhibi-
tors,2 analgesic3 and anti-inflammatory4 compounds, and
SNC active compounds, including serotonergics5 and the
anti-Parkinson drug ropirinole.6 The oxindole motif is
also a key structural element in several bioactive natural
products,7 including the antifungal ascidian metabolite
cynthichlorine,8 the cell-cycle inhibitors spirotryprostatin
A,9 and the MDR inhibitor and antimicrotubule agent
N-methylwelwitindolinone C isothiocyanate (welwista-
tin, Figure 1).2,10 Most of these compounds bear a variety
of substituents at the oxindole C-3 position and many of
them, including spirotryprostatin, speradine, and welwist-
atin, are also functionalized at the g-position of the chain
attached to C-3.

Dimethyl sulfoxide is widely employed as an oxidant,
most notably in the transformation of primary alcohols
into aldehydes. The oxidation of indoles into oxindoles by
dimethyl sulfoxide under acidic conditions is well
known,11,12 although this transformation is not general due
to the low stability of indole derivatives in acidic media.
Alternative modes of reaction are known when nucleo-
philic groups are present in side chains attached to the in-
dole ring. Thus, N-acetyltryptophan methyl ester (1), upon
treatment with the Swern reagent, gives a moderate yield
of the tricyclic derivatives 2, in a transformation that in-
volves the overall oxidation at the C-2 position of indole
and that was rationalized as shown in Scheme 1. When the
same reaction was performed on cyclo-(L-Trp-L-Pro), a
similar cyclization occurred, but a methylthiomethyl
group was introduced at C-4 of indole; this side reaction

could be prevented by use of DMSO–TFAA–Et3N and by
carrying out the whole procedure at –78 °C, but under
these conditions the cyclization proceeded in only 12%
yield.13

In this context, we communicate here our findings on the
Swern oxidation of compounds where the side-chain nu-
cleophile is a g- or d-hydroxy group and show that a reac-
tion pathway alternative to that in Scheme 1 is possible,
leading to the efficient formation of oxindole systems
functionalized by chloro substituents at both the oxindole
C-3 and the side-chain g- or d-positions.

The starting materials for our study were prepared as
shown in Scheme 2. Thus, primary alcohols 6a,b were ob-

Figure 1 Some bioactive natural oxindoles
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tained from the corresponding 3-unsubstituted indoles
3a,b through a Vilsmeier formylation–Wittig olefination–
reduction sequence, while the secondary alcohols 6c–g
came from a ytterbium triflate catalyzed Michael
reaction14 of indoles 3c–e with the corresponding a,b-un-
saturated ketones to give compounds 7,14 followed by so-
dium borohydride reduction. 4-(3-Indolyl)butanol 6h was
prepared by a literature method.15

As shown in Scheme 3 and Table 1, the reaction between
3-(3-hydroxyalkyl)indole derivatives 6a–g and dimethyl
sulfoxide under Swern conditions gave good to excellent
yields of oxindole derivatives 8, bearing chloro substitu-
ents at the C-3 position of the oxindole and at the g- or d-
positions of the side chain.16–18 In two examples (c and d),
this product was accompanied by small amounts of the
corresponding g-oxo-3-chlorooxindoles.19 In the cases
where R was different from hydrogen (b–g), compounds
8 were obtained as 2:1 to 3:1 diastereomeric mixtures that
could not be separated because column chromatography
must be very fast in order to avoid the hydrolysis of com-
pounds 8 into the corresponding diols.

Scheme 3 One-pot preparation of chlorooxindole derivatives

One possible rationalization for the formation of the ob-
served products can be found in Scheme 4, (a). The initial
reaction between the nucleophilic C-3 position of indoles
6 and one of the sulfonium species present in the reaction
medium leads to iminium derivatives 9, where the C-2 po-
sition is highly electrophilic and is trapped by a second
molecule of dimethyl sulfoxide to give intermediates 10.
The latter compounds would yield 11 by spirocycliza-
tion,20 thus protecting the side-chain hydroxyl group from
oxidation, and then 11 would be transformed into the cor-
responding oxindoles by elimination of dimethyl sulfide.
Subsequent evolution to the final product may then pro-

Scheme 2 Synthesis of starting materials. Reagents and conditions: i) for 3a: POCl3, DMF, 0 °C, 30 min, 0 °C to r.t., 45 min, then NaOH–
H2O (20%), pH = 8, 60 °C, 30 min, 60%; for 3b: same conditions (58%); ii) for 4a: Ph3P=CHCO2Et, EtOH, r.t., 90 min (98%, E/Z = 4:1); for
4b: Ph3P=CHCO2Et, EtOH, 110 °C, 48 h (87%, E/Z = 6:1); iii) for 5a: H2, Pd/C, r.t., 4 h (90%); for 5b: H2, Pd/C, r.t., 8.5 h (100%); iv) for 5a:
LiAlH4, THF, r.t., 16 h (85%); for 5b: same conditions (88%); v) Yb(OTf)3, MeCN, r.t., 16 h; vi) NaBH4, EtOH, r.t., 45 min.
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Table 1 Yields Obtained in the Chlorooxindole Synthesis

Compd  R1 R4 R5 R n Yield 
(%)

dr

8a Me H H H 1 82 –

8b Me TBDPSOCH2 H H 1 90 –

8c Me H H Me 1 71a 2:1

8d Me H H Et 1 73b 2:1

8e H H H Me 1 80 2:1

8f H H H Et 1 87 2:1

8g H H MeO Me 1 81 3:1

8h H H H H 2 85 –

a Together with 15% of 3-chloro-1-methyl-3-(3-oxobutyl)oxindole.
b Together with 12% of 3-chloro-1-ethyl-3-(3-oxobutyl)oxindole.
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ceed by reaction of the tetrahydrofuran oxygen with one
of the highly electrophilic species present in the reaction
medium (e.g., oxalyl chloride) to give the oxonium deriv-
ative 12, which then would undergo ring opening by at-
tack of chloride anion21 to the position adjacent to the
oxonium group, giving 13, followed by loss of carbon
monoxide and carbon dioxide. An alternative pathway can
be proposed [Scheme 4, (b)] involving cyclization of the
side-chain oxygen onto the iminium cation function in 9
to give 14, followed by elimination of dimethyl sulfide
furnishing the fused pyrano[2,3-b]indole or oxepino[2,3-
b]indole systems 15. Further reaction of the indole C-3
position with the Swern reagent to give 16 followed by
two final steps involving nucleophilic attack by chloride,
namely opening of the oxygenated ring and displacement
of a second molecule of dimethyl sulfide, would lead to
the observed products 8. In order to discriminate between
these two proposals, we submitted 2-(1-methyl-3-in-
dolyl)ethanol (17) to the Swern conditions because in this
case the intermediate corresponding to 11 would have a
highly strained spirooxetane structure, while that corre-
sponding to 15 would be much more easily formed and in-
deed it would be an analogue of the species generated
from N-acetyltryptamine, as previously mentioned.13 As
shown in Scheme 5, this reaction did not give a dichlo-
rooxindole derivative, as would be expected if mechanism
b was in operation, but instead afforded the known22 com-
pound 18 in 67% yield. The formation of 18 can be ex-
plained by the generation of 20 (analogous to 2) by
elimination of HCl and dimethyl sulfide from intermedi-
ate 19, followed by opening of the furane ring under the
acidic workup conditions. A similar acid-catalyzed ring
opening has been described for the 3a-hydroxy analogue
of 19, presumably through 20 as an intermediate,23 and
also for the pyrane analogue of 20.18b

In conclusion, we have developed a general, one-pot
method that allows the transformation in good overall
yields of 3-(3- or 4-hydroxyalkyl)indoles into oxindole
derivatives with additional functionalization (chlorine
substituents) at the C-3 position of the oxindole ring and
at the g- or d-position of the side chain. The method uses
Swern chemistry, which involves very mild conditions
and simple and inexpensive reagents.
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